MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuvtxaOLD Structured version   Visualization version   GIF version

Theorem isuvtxaOLD 26496
Description: Obsolete version of uvtxel1 26497 as of 14-Feb-2022. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
isuvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isuvtxaOLD (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒})
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑒,𝐸   𝑒,𝐺,𝑘,𝑣   𝑒,𝑉,𝑘   𝑒,𝑊,𝑘,𝑣
Allowed substitution hints:   𝐸(𝑣,𝑘)

Proof of Theorem isuvtxaOLD
StepHypRef Expression
1 uvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxavalOLD 26486 . 2 (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)})
3 isuvtx.e . . . . . 6 𝐸 = (Edg‘𝐺)
41, 3nbgrel 26430 . . . . 5 (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒))
5 df-3an 1074 . . . . . 6 (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒))
6 prcom 4409 . . . . . . . . 9 {𝑘, 𝑣} = {𝑣, 𝑘}
76sseq1i 3768 . . . . . . . 8 ({𝑘, 𝑣} ⊆ 𝑒 ↔ {𝑣, 𝑘} ⊆ 𝑒)
87rexbii 3177 . . . . . . 7 (∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)
9 simpr 479 . . . . . . . . . 10 ((𝐺𝑊𝑣𝑉) → 𝑣𝑉)
10 eldifi 3873 . . . . . . . . . 10 (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘𝑉)
119, 10anim12ci 592 . . . . . . . . 9 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘𝑉𝑣𝑉))
12 eldifsni 4464 . . . . . . . . . 10 (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘𝑣)
1312adantl 473 . . . . . . . . 9 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → 𝑘𝑣)
1411, 13jca 555 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣))
1514biantrurd 530 . . . . . . 7 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒 ↔ (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)))
168, 15syl5rbb 273 . . . . . 6 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ ∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
175, 16syl5bb 272 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ ∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
184, 17syl5bb 272 . . . 4 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
1918ralbidva 3121 . . 3 ((𝐺𝑊𝑣𝑉) → (∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
2019rabbidva 3326 . 2 (𝐺𝑊 → {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒})
212, 20eqtrd 2792 1 (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1630  wcel 2137  wne 2930  wral 3048  wrex 3049  {crab 3052  cdif 3710  wss 3713  {csn 4319  {cpr 4321  cfv 6047  (class class class)co 6811  Vtxcvtx 26071  Edgcedg 26136   NeighbVtx cnbgr 26421  UnivVtxcuvtx 26483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fv 6055  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-1st 7331  df-2nd 7332  df-nbgr 26422  df-uvtx 26484
This theorem is referenced by:  uvtxael1OLD  26499
  Copyright terms: Public domain W3C validator