MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvciOLD Structured version   Visualization version   GIF version

Theorem isvciOLD 28351
Description: Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006.) Obsolete version of iscvsi 23727. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
isvciOLD.1 𝐺 ∈ AbelOp
isvciOLD.2 dom 𝐺 = (𝑋 × 𝑋)
isvciOLD.3 𝑆:(ℂ × 𝑋)⟶𝑋
isvciOLD.4 (𝑥𝑋 → (1𝑆𝑥) = 𝑥)
isvciOLD.5 ((𝑦 ∈ ℂ ∧ 𝑥𝑋𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
isvciOLD.6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
isvciOLD.7 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
isvciOLD.8 𝑊 = ⟨𝐺, 𝑆
Assertion
Ref Expression
isvciOLD 𝑊 ∈ CVecOLD
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem isvciOLD
StepHypRef Expression
1 isvciOLD.8 . 2 𝑊 = ⟨𝐺, 𝑆
2 isvciOLD.1 . . 3 𝐺 ∈ AbelOp
3 isvciOLD.3 . . 3 𝑆:(ℂ × 𝑋)⟶𝑋
4 isvciOLD.4 . . . . 5 (𝑥𝑋 → (1𝑆𝑥) = 𝑥)
5 isvciOLD.5 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥𝑋𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
653com12 1119 . . . . . . . . 9 ((𝑥𝑋𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
763expa 1114 . . . . . . . 8 (((𝑥𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
87ralrimiva 3182 . . . . . . 7 ((𝑥𝑋𝑦 ∈ ℂ) → ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
9 isvciOLD.6 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
10 isvciOLD.7 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
119, 10jca 514 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
12113comr 1121 . . . . . . . . 9 ((𝑥𝑋𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
13123expa 1114 . . . . . . . 8 (((𝑥𝑋𝑦 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
1413ralrimiva 3182 . . . . . . 7 ((𝑥𝑋𝑦 ∈ ℂ) → ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
158, 14jca 514 . . . . . 6 ((𝑥𝑋𝑦 ∈ ℂ) → (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
1615ralrimiva 3182 . . . . 5 (𝑥𝑋 → ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
174, 16jca 514 . . . 4 (𝑥𝑋 → ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
1817rgen 3148 . . 3 𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
19 ablogrpo 28318 . . . . . 6 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
202, 19ax-mp 5 . . . . 5 𝐺 ∈ GrpOp
21 isvciOLD.2 . . . . 5 dom 𝐺 = (𝑋 × 𝑋)
2220, 21grporn 28292 . . . 4 𝑋 = ran 𝐺
2322isvcOLD 28350 . . 3 (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
242, 3, 18, 23mpbir3an 1337 . 2 𝐺, 𝑆⟩ ∈ CVecOLD
251, 24eqeltri 2909 1 𝑊 ∈ CVecOLD
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  cop 4567   × cxp 5548  dom cdm 5550  wf 6346  (class class class)co 7150  cc 10529  1c1 10532   + caddc 10534   · cmul 10536  GrpOpcgr 28260  AbelOpcablo 28315  CVecOLDcvc 28329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-grpo 28264  df-ablo 28316  df-vc 28330
This theorem is referenced by:  cncvcOLD  28354  hilvc  28933  hhssnv  29035
  Copyright terms: Public domain W3C validator