![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iswun | Structured version Visualization version GIF version |
Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
iswun | ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 4791 | . . 3 ⊢ (𝑢 = 𝑈 → (Tr 𝑢 ↔ Tr 𝑈)) | |
2 | neeq1 2885 | . . 3 ⊢ (𝑢 = 𝑈 → (𝑢 ≠ ∅ ↔ 𝑈 ≠ ∅)) | |
3 | eleq2 2719 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∪ 𝑥 ∈ 𝑢 ↔ ∪ 𝑥 ∈ 𝑈)) | |
4 | eleq2 2719 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑥 ∈ 𝑈)) | |
5 | eleq2 2719 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ({𝑥, 𝑦} ∈ 𝑢 ↔ {𝑥, 𝑦} ∈ 𝑈)) | |
6 | 5 | raleqbi1dv 3176 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ↔ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
7 | 3, 4, 6 | 3anbi123d 1439 | . . . 4 ⊢ (𝑢 = 𝑈 → ((∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢) ↔ (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
8 | 7 | raleqbi1dv 3176 | . . 3 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢) ↔ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
9 | 1, 2, 8 | 3anbi123d 1439 | . 2 ⊢ (𝑢 = 𝑈 → ((Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢)) ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
10 | df-wun 9562 | . 2 ⊢ WUni = {𝑢 ∣ (Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢))} | |
11 | 9, 10 | elab2g 3385 | 1 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∅c0 3948 𝒫 cpw 4191 {cpr 4212 ∪ cuni 4468 Tr wtr 4785 WUnicwun 9560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-v 3233 df-in 3614 df-ss 3621 df-uni 4469 df-tr 4786 df-wun 9562 |
This theorem is referenced by: wuntr 9565 wununi 9566 wunpw 9567 wunpr 9569 wun0 9578 intwun 9595 r1limwun 9596 wunex2 9598 tskwun 9644 gruwun 9673 pwinfi2 38184 |
Copyright terms: Public domain | W3C validator |