MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxmetd Structured version   Visualization version   GIF version

Theorem isxmetd 22112
Description: Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
isxmetd.0 (𝜑𝑋 ∈ V)
isxmetd.1 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
isxmetd.2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
isxmetd.3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
Assertion
Ref Expression
isxmetd (𝜑𝐷 ∈ (∞Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isxmetd
StepHypRef Expression
1 isxmetd.1 . 2 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 isxmetd.2 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
3 isxmetd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
433exp2 1283 . . . . . 6 (𝜑 → (𝑥𝑋 → (𝑦𝑋 → (𝑧𝑋 → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
54imp32 449 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧𝑋 → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
65ralrimiv 2962 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
72, 6jca 554 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
87ralrimivva 2968 . 2 (𝜑 → ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
9 isxmetd.0 . . 3 (𝜑𝑋 ∈ V)
10 isxmet 22110 . . 3 (𝑋 ∈ V → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
119, 10syl 17 . 2 (𝜑 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
121, 8, 11mpbir2and 956 1 (𝜑𝐷 ∈ (∞Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  Vcvv 3195   class class class wbr 4644   × cxp 5102  wf 5872  cfv 5876  (class class class)co 6635  0cc0 9921  *cxr 10058  cle 10060   +𝑒 cxad 11929  ∞Metcxmt 19712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-map 7844  df-xr 10063  df-xmet 19720
This theorem is referenced by:  isxmet2d  22113  xmetres2  22147  comet  22299
  Copyright terms: Public domain W3C validator