MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1ge0 Structured version   Visualization version   GIF version

Theorem itg1ge0 24214
Description: Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014.)
Assertion
Ref Expression
itg1ge0 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ (∫1𝐹))

Proof of Theorem itg1ge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1frn 24205 . . . . 5 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
2 difss 4105 . . . . 5 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
3 ssfi 8726 . . . . 5 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
41, 2, 3sylancl 586 . . . 4 (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ∈ Fin)
54adantr 481 . . 3 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
6 i1ff 24204 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
76adantr 481 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶ℝ)
87frnd 6514 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ran 𝐹 ⊆ ℝ)
98ssdifssd 4116 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (ran 𝐹 ∖ {0}) ⊆ ℝ)
109sselda 3964 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥 ∈ ℝ)
11 i1fima2sn 24208 . . . . 5 ((𝐹 ∈ dom ∫1𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
1211adantlr 711 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
1310, 12remulcld 10659 . . 3 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℝ)
14 eldifi 4100 . . . . 5 (𝑥 ∈ (ran 𝐹 ∖ {0}) → 𝑥 ∈ ran 𝐹)
15 0cn 10621 . . . . . . . . . . . 12 0 ∈ ℂ
16 fnconstg 6560 . . . . . . . . . . . 12 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
1715, 16ax-mp 5 . . . . . . . . . . 11 (ℂ × {0}) Fn ℂ
18 df-0p 24198 . . . . . . . . . . . 12 0𝑝 = (ℂ × {0})
1918fneq1i 6443 . . . . . . . . . . 11 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
2017, 19mpbir 232 . . . . . . . . . 10 0𝑝 Fn ℂ
2120a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → 0𝑝 Fn ℂ)
226ffnd 6508 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹 Fn ℝ)
23 cnex 10606 . . . . . . . . . 10 ℂ ∈ V
2423a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℂ ∈ V)
25 reex 10616 . . . . . . . . . 10 ℝ ∈ V
2625a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
27 ax-resscn 10582 . . . . . . . . . 10 ℝ ⊆ ℂ
28 sseqin2 4189 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
2927, 28mpbi 231 . . . . . . . . 9 (ℂ ∩ ℝ) = ℝ
30 0pval 24199 . . . . . . . . . 10 (𝑦 ∈ ℂ → (0𝑝𝑦) = 0)
3130adantl 482 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑦 ∈ ℂ) → (0𝑝𝑦) = 0)
32 eqidd 2819 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
3321, 22, 24, 26, 29, 31, 32ofrfval 7406 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (0𝑝r𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3433biimpa 477 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦))
3522adantr 481 . . . . . . . 8 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 𝐹 Fn ℝ)
36 breq2 5061 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (𝐹𝑦)))
3736ralrn 6846 . . . . . . . 8 (𝐹 Fn ℝ → (∀𝑥 ∈ ran 𝐹0 ≤ 𝑥 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3835, 37syl 17 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (∀𝑥 ∈ ran 𝐹0 ≤ 𝑥 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3934, 38mpbird 258 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ∀𝑥 ∈ ran 𝐹0 ≤ 𝑥)
4039r19.21bi 3205 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ ran 𝐹) → 0 ≤ 𝑥)
4114, 40sylan2 592 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ 𝑥)
42 i1fima 24206 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑥}) ∈ dom vol)
4342ad2antrr 722 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑥}) ∈ dom vol)
44 mblss 24059 . . . . . . 7 ((𝐹 “ {𝑥}) ∈ dom vol → (𝐹 “ {𝑥}) ⊆ ℝ)
45 ovolge0 24009 . . . . . . 7 ((𝐹 “ {𝑥}) ⊆ ℝ → 0 ≤ (vol*‘(𝐹 “ {𝑥})))
4644, 45syl 17 . . . . . 6 ((𝐹 “ {𝑥}) ∈ dom vol → 0 ≤ (vol*‘(𝐹 “ {𝑥})))
47 mblvol 24058 . . . . . 6 ((𝐹 “ {𝑥}) ∈ dom vol → (vol‘(𝐹 “ {𝑥})) = (vol*‘(𝐹 “ {𝑥})))
4846, 47breqtrrd 5085 . . . . 5 ((𝐹 “ {𝑥}) ∈ dom vol → 0 ≤ (vol‘(𝐹 “ {𝑥})))
4943, 48syl 17 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (vol‘(𝐹 “ {𝑥})))
5010, 12, 41, 49mulge0d 11205 . . 3 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑥 · (vol‘(𝐹 “ {𝑥}))))
515, 13, 50fsumge0 15138 . 2 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
52 itg1val 24211 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
5352adantr 481 . 2 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
5451, 53breqtrrd 5085 1 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  cdif 3930  cin 3932  wss 3933  {csn 4557   class class class wbr 5057   × cxp 5546  ccnv 5547  dom cdm 5548  ran crn 5549  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  r cofr 7397  Fincfn 8497  cc 10523  cr 10524  0cc0 10525   · cmul 10530  cle 10664  Σcsu 15030  vol*covol 23990  volcvol 23991  1citg1 24143  0𝑝c0p 24197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-xmet 20466  df-met 20467  df-ovol 23992  df-vol 23993  df-mbf 24147  df-itg1 24148  df-0p 24198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator