Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itg2addnc Structured version   Visualization version   GIF version

 Description: Alternate proof of itg2add 23449 using the "buffer zone" definition from the first lemma, in which every simple function in the set is divided into to by dividing its buffer by a third and finding the largest allowable function locked to a grid laid out in increments of the new, smaller buffer up to the original simple function. The measurability of this function follows from that of the augend, and subtracting it from the original simple function yields another simple function by i1fsub 23398, which is allowable by the fact that the grid must have a mark between one third and two thirds the original buffer. This has two advantages over the current approach: first, eliminating ax-cc 9209, and second, weakening the measurability hypothesis to only the augend. (Contributed by Brendan Leahy, 31-Oct-2017.) (Revised by Brendan Leahy, 13-Mar-2018.)
Hypotheses
Ref Expression
itg2addnc.f3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2addnc.g3 (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2addnc (𝜑 → (∫2‘(𝐹𝑓 + 𝐺)) = ((∫2𝐹) + (∫2𝐺)))

Dummy variables 𝑡 𝑠 𝑢 𝑥 𝑦 𝑧 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 795 . . . . . . 7 ((𝑓 ∈ dom ∫1 ∧ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))) → 𝑥 = (∫1𝑓))
2 itg1cl 23375 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
32adantr 481 . . . . . . 7 ((𝑓 ∈ dom ∫1 ∧ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))) → (∫1𝑓) ∈ ℝ)
41, 3eqeltrd 2698 . . . . . 6 ((𝑓 ∈ dom ∫1 ∧ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))) → 𝑥 ∈ ℝ)
54rexlimiva 3022 . . . . 5 (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓)) → 𝑥 ∈ ℝ)
65abssi 3661 . . . 4 {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ⊆ ℝ
76a1i 11 . . 3 (𝜑 → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ⊆ ℝ)
8 i1f0 23377 . . . . . 6 (ℝ × {0}) ∈ dom ∫1
9 3nn 11138 . . . . . . . 8 3 ∈ ℕ
10 nnrp 11794 . . . . . . . 8 (3 ∈ ℕ → 3 ∈ ℝ+)
11 ne0i 3902 . . . . . . . 8 (3 ∈ ℝ+ → ℝ+ ≠ ∅)
129, 10, 11mp2b 10 . . . . . . 7 + ≠ ∅
13 itg2addnc.f2 . . . . . . . . . . . . 13 (𝜑𝐹:ℝ⟶(0[,)+∞))
1413ffvelrnda 6320 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (0[,)+∞))
15 elrege0 12228 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ (0[,)+∞) ↔ ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧)))
1614, 15sylib 208 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → ((𝐹𝑧) ∈ ℝ ∧ 0 ≤ (𝐹𝑧)))
1716simprd 479 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → 0 ≤ (𝐹𝑧))
1817ralrimiva 2961 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℝ 0 ≤ (𝐹𝑧))
19 reex 9979 . . . . . . . . . . 11 ℝ ∈ V
2019a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ V)
21 c0ex 9986 . . . . . . . . . . 11 0 ∈ V
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → 0 ∈ V)
23 eqidd 2622 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ℝ ↦ 0) = (𝑧 ∈ ℝ ↦ 0))
2413feqmptd 6211 . . . . . . . . . 10 (𝜑𝐹 = (𝑧 ∈ ℝ ↦ (𝐹𝑧)))
2520, 22, 14, 23, 24ofrfval2 6875 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐹 ↔ ∀𝑧 ∈ ℝ 0 ≤ (𝐹𝑧)))
2618, 25mpbird 247 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐹)
2726ralrimivw 2962 . . . . . . 7 (𝜑 → ∀𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐹)
28 r19.2z 4037 . . . . . . 7 ((ℝ+ ≠ ∅ ∧ ∀𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐹) → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐹)
2912, 27, 28sylancr 694 . . . . . 6 (𝜑 → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐹)
30 fveq2 6153 . . . . . . . . . 10 (𝑓 = (ℝ × {0}) → (∫1𝑓) = (∫1‘(ℝ × {0})))
31 itg10 23378 . . . . . . . . . 10 (∫1‘(ℝ × {0})) = 0
3230, 31syl6req 2672 . . . . . . . . 9 (𝑓 = (ℝ × {0}) → 0 = (∫1𝑓))
3332biantrud 528 . . . . . . . 8 (𝑓 = (ℝ × {0}) → (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ 0 = (∫1𝑓))))
34 fveq1 6152 . . . . . . . . . . . . 13 (𝑓 = (ℝ × {0}) → (𝑓𝑧) = ((ℝ × {0})‘𝑧))
3521fvconst2 6429 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → ((ℝ × {0})‘𝑧) = 0)
3634, 35sylan9eq 2675 . . . . . . . . . . . 12 ((𝑓 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) = 0)
3736iftrued 4071 . . . . . . . . . . 11 ((𝑓 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) = 0)
3837mpteq2dva 4709 . . . . . . . . . 10 (𝑓 = (ℝ × {0}) → (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ 0))
3938breq1d 4628 . . . . . . . . 9 (𝑓 = (ℝ × {0}) → ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ↔ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐹))
4039rexbidv 3046 . . . . . . . 8 (𝑓 = (ℝ × {0}) → (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ↔ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐹))
4133, 40bitr3d 270 . . . . . . 7 (𝑓 = (ℝ × {0}) → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ 0 = (∫1𝑓)) ↔ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐹))
4241rspcev 3298 . . . . . 6 (((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐹) → ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ 0 = (∫1𝑓)))
438, 29, 42sylancr 694 . . . . 5 (𝜑 → ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ 0 = (∫1𝑓)))
44 eqeq1 2625 . . . . . . . 8 (𝑥 = 0 → (𝑥 = (∫1𝑓) ↔ 0 = (∫1𝑓)))
4544anbi2d 739 . . . . . . 7 (𝑥 = 0 → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓)) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ 0 = (∫1𝑓))))
4645rexbidv 3046 . . . . . 6 (𝑥 = 0 → (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓)) ↔ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ 0 = (∫1𝑓))))
4721, 46elab 3337 . . . . 5 (0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ↔ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ 0 = (∫1𝑓)))
4843, 47sylibr 224 . . . 4 (𝜑 → 0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))})
49 ne0i 3902 . . . 4 (0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ≠ ∅)
5048, 49syl 17 . . 3 (𝜑 → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ≠ ∅)
51 icossicc 12210 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
52 fss 6018 . . . . . . 7 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
5351, 52mpan2 706 . . . . . 6 (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶(0[,]+∞))
54 eqid 2621 . . . . . . 7 {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} = {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}
5554itg2addnclem 33128 . . . . . 6 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
5613, 53, 553syl 18 . . . . 5 (𝜑 → (∫2𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
57 itg2addnc.f3 . . . . 5 (𝜑 → (∫2𝐹) ∈ ℝ)
5856, 57eqeltrrd 2699 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) ∈ ℝ)
59 ressxr 10035 . . . . . . 7 ℝ ⊆ ℝ*
606, 59sstri 3596 . . . . . 6 {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ⊆ ℝ*
61 supxrub 12105 . . . . . 6 (({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ⊆ ℝ*𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}) → 𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
6260, 61mpan 705 . . . . 5 (𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} → 𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
6362rgen 2917 . . . 4 𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < )
64 breq2 4622 . . . . . 6 (𝑎 = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) → (𝑏𝑎𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < )))
6564ralbidv 2981 . . . . 5 (𝑎 = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) → (∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}𝑏𝑎 ↔ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < )))
6665rspcev 3298 . . . 4 ((sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) ∈ ℝ ∧ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < )) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}𝑏𝑎)
6758, 63, 66sylancl 693 . . 3 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}𝑏𝑎)
68 simprr 795 . . . . . . 7 ((𝑔 ∈ dom ∫1 ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))) → 𝑥 = (∫1𝑔))
69 itg1cl 23375 . . . . . . . 8 (𝑔 ∈ dom ∫1 → (∫1𝑔) ∈ ℝ)
7069adantr 481 . . . . . . 7 ((𝑔 ∈ dom ∫1 ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))) → (∫1𝑔) ∈ ℝ)
7168, 70eqeltrd 2698 . . . . . 6 ((𝑔 ∈ dom ∫1 ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))) → 𝑥 ∈ ℝ)
7271rexlimiva 3022 . . . . 5 (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔)) → 𝑥 ∈ ℝ)
7372abssi 3661 . . . 4 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} ⊆ ℝ
7473a1i 11 . . 3 (𝜑 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} ⊆ ℝ)
75 itg2addnc.g2 . . . . . . . . . . . . 13 (𝜑𝐺:ℝ⟶(0[,)+∞))
7675ffvelrnda 6320 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ∈ (0[,)+∞))
77 elrege0 12228 . . . . . . . . . . . 12 ((𝐺𝑧) ∈ (0[,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 0 ≤ (𝐺𝑧)))
7876, 77sylib 208 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → ((𝐺𝑧) ∈ ℝ ∧ 0 ≤ (𝐺𝑧)))
7978simprd 479 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → 0 ≤ (𝐺𝑧))
8079ralrimiva 2961 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℝ 0 ≤ (𝐺𝑧))
8175feqmptd 6211 . . . . . . . . . 10 (𝜑𝐺 = (𝑧 ∈ ℝ ↦ (𝐺𝑧)))
8220, 22, 76, 23, 81ofrfval2 6875 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐺 ↔ ∀𝑧 ∈ ℝ 0 ≤ (𝐺𝑧)))
8380, 82mpbird 247 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐺)
8483ralrimivw 2962 . . . . . . 7 (𝜑 → ∀𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐺)
85 r19.2z 4037 . . . . . . 7 ((ℝ+ ≠ ∅ ∧ ∀𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐺) → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐺)
8612, 84, 85sylancr 694 . . . . . 6 (𝜑 → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐺)
87 fveq2 6153 . . . . . . . . . 10 (𝑔 = (ℝ × {0}) → (∫1𝑔) = (∫1‘(ℝ × {0})))
8887, 31syl6req 2672 . . . . . . . . 9 (𝑔 = (ℝ × {0}) → 0 = (∫1𝑔))
8988biantrud 528 . . . . . . . 8 (𝑔 = (ℝ × {0}) → (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ∧ 0 = (∫1𝑔))))
90 fveq1 6152 . . . . . . . . . . . . 13 (𝑔 = (ℝ × {0}) → (𝑔𝑧) = ((ℝ × {0})‘𝑧))
9190, 35sylan9eq 2675 . . . . . . . . . . . 12 ((𝑔 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) = 0)
9291iftrued 4071 . . . . . . . . . . 11 ((𝑔 = (ℝ × {0}) ∧ 𝑧 ∈ ℝ) → if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) = 0)
9392mpteq2dva 4709 . . . . . . . . . 10 (𝑔 = (ℝ × {0}) → (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ 0))
9493breq1d 4628 . . . . . . . . 9 (𝑔 = (ℝ × {0}) → ((𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ↔ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐺))
9594rexbidv 3046 . . . . . . . 8 (𝑔 = (ℝ × {0}) → (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ↔ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐺))
9689, 95bitr3d 270 . . . . . . 7 (𝑔 = (ℝ × {0}) → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ∧ 0 = (∫1𝑔)) ↔ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐺))
9796rspcev 3298 . . . . . 6 (((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0) ∘𝑟𝐺) → ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ∧ 0 = (∫1𝑔)))
988, 86, 97sylancr 694 . . . . 5 (𝜑 → ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ∧ 0 = (∫1𝑔)))
99 eqeq1 2625 . . . . . . . 8 (𝑥 = 0 → (𝑥 = (∫1𝑔) ↔ 0 = (∫1𝑔)))
10099anbi2d 739 . . . . . . 7 (𝑥 = 0 → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔)) ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ∧ 0 = (∫1𝑔))))
101100rexbidv 3046 . . . . . 6 (𝑥 = 0 → (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ∧ 0 = (∫1𝑔))))
10221, 101elab 3337 . . . . 5 (0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} ↔ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ∧ 0 = (∫1𝑔)))
10398, 102sylibr 224 . . . 4 (𝜑 → 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})
104 ne0i 3902 . . . 4 (0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} ≠ ∅)
105103, 104syl 17 . . 3 (𝜑 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} ≠ ∅)
106 fss 6018 . . . . . . 7 ((𝐺:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐺:ℝ⟶(0[,]+∞))
10751, 106mpan2 706 . . . . . 6 (𝐺:ℝ⟶(0[,)+∞) → 𝐺:ℝ⟶(0[,]+∞))
108 eqid 2621 . . . . . . 7 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}
109108itg2addnclem 33128 . . . . . 6 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
11075, 107, 1093syl 18 . . . . 5 (𝜑 → (∫2𝐺) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
111 itg2addnc.g3 . . . . 5 (𝜑 → (∫2𝐺) ∈ ℝ)
112110, 111eqeltrrd 2699 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) ∈ ℝ)
11373, 59sstri 3596 . . . . . 6 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} ⊆ ℝ*
114 supxrub 12105 . . . . . 6 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} ⊆ ℝ*𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}) → 𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
115113, 114mpan 705 . . . . 5 (𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} → 𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
116115rgen 2917 . . . 4 𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )
117 breq2 4622 . . . . . 6 (𝑎 = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) → (𝑏𝑎𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))
118117ralbidv 2981 . . . . 5 (𝑎 = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) → (∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏𝑎 ↔ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))
119118rspcev 3298 . . . 4 ((sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) ∈ ℝ ∧ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏𝑎)
120112, 116, 119sylancl 693 . . 3 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏𝑎)
121 eqid 2621 . . 3 {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} = {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}
1227, 50, 67, 74, 105, 120, 121supadd 10943 . 2 (𝜑 → (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ, < )) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
123 supxrre 12108 . . . . 5 (({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}𝑏𝑎) → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ, < ))
1247, 50, 67, 123syl3anc 1323 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ, < ))
12556, 124eqtrd 2655 . . 3 (𝜑 → (∫2𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ, < ))
126 supxrre 12108 . . . . 5 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏𝑎) → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ, < ))
12774, 105, 120, 126syl3anc 1323 . . . 4 (𝜑 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ, < ))
128110, 127eqtrd 2655 . . 3 (𝜑 → (∫2𝐺) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ, < ))
129125, 128oveq12d 6628 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ, < )))
130 ge0addcl 12234 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
13151, 130sseldi 3585 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,]+∞))
132131adantl 482 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,]+∞))
133 inidm 3805 . . . . 5 (ℝ ∩ ℝ) = ℝ
134132, 13, 75, 20, 20, 133off 6872 . . . 4 (𝜑 → (𝐹𝑓 + 𝐺):ℝ⟶(0[,]+∞))
135 eqid 2621 . . . . 5 {𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1))} = {𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1))}
136135itg2addnclem 33128 . . . 4 ((𝐹𝑓 + 𝐺):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑓 + 𝐺)) = sup({𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1))}, ℝ*, < ))
137134, 136syl 17 . . 3 (𝜑 → (∫2‘(𝐹𝑓 + 𝐺)) = sup({𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1))}, ℝ*, < ))
138 itg2addnc.f1 . . . . . . . 8 (𝜑𝐹 ∈ MblFn)
139138, 13, 57, 75, 111itg2addnclem3 33130 . . . . . . 7 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
140 simpl 473 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑓 ∈ dom ∫1)
141 simpr 477 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑔 ∈ dom ∫1)
142140, 141i1fadd 23385 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑓𝑓 + 𝑔) ∈ dom ∫1)
143142ad3antlr 766 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → (𝑓𝑓 + 𝑔) ∈ dom ∫1)
144 reeanv 3100 . . . . . . . . . . . . . . . . 17 (∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺))
145144biimpri 218 . . . . . . . . . . . . . . . 16 ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺) → ∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺))
146145ad2ant2r 782 . . . . . . . . . . . . . . 15 (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) → ∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺))
147 ifcl 4107 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ+)
148147ad2antlr 762 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺)) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ+)
149 breq1 4621 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (0 ≤ (𝐹𝑧) ↔ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧)))
150149anbi1d 740 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) ↔ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
151150imbi1d 331 . . . . . . . . . . . . . . . . . . . . . 22 (0 = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
152 breq1 4621 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓𝑧) + 𝑐) = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ↔ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧)))
153152anbi1d 740 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓𝑧) + 𝑐) = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) ↔ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
154153imbi1d 331 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑧) + 𝑐) = if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) → (((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
155 breq1 4621 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (0 ≤ (𝐺𝑧) ↔ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
156155anbi2d 739 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((0 ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) ↔ (0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
157156imbi1d 331 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((0 ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
158 breq1 4621 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧) ↔ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
159158anbi2d 739 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) ↔ (0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
160159imbi1d 331 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
161 oveq12 6619 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑓𝑧) = 0 ∧ (𝑔𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = (0 + 0))
162 00id 10163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 + 0) = 0
163161, 162syl6eq 2671 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑓𝑧) = 0 ∧ (𝑔𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = 0)
164163iftrued 4071 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓𝑧) = 0 ∧ (𝑔𝑧) = 0) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) = 0)
165164adantll 749 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) = 0)
166 simpll 789 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝜑)
16715simplbi 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝑧) ∈ (0[,)+∞) → (𝐹𝑧) ∈ ℝ)
16814, 167syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
16977simplbi 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐺𝑧) ∈ (0[,)+∞) → (𝐺𝑧) ∈ ℝ)
17076, 169syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℝ)
171168, 170, 17, 79addge0d 10555 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ ℝ) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
172166, 171sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
173172ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
174165, 173eqbrtrd 4640 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
175174a1d 25 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
176172ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
177 oveq1 6617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑓𝑧) = 0 → ((𝑓𝑧) + (𝑔𝑧)) = (0 + (𝑔𝑧)))
178 simplrr 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑔 ∈ dom ∫1)
179 i1ff 23366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
180179ffvelrnda 6320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑔 ∈ dom ∫1𝑧 ∈ ℝ) → (𝑔𝑧) ∈ ℝ)
181178, 180sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) ∈ ℝ)
182181recnd 10020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) ∈ ℂ)
183182addid2d 10189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (0 + (𝑔𝑧)) = (𝑔𝑧))
184177, 183sylan9eqr 2677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = (𝑔𝑧))
185184oveq1d 6625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
186185adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
187147rpred 11824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ)
188187ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ)
189181, 188readdcld 10021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
190189adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
191166, 170sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ℝ)
192191adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (𝐺𝑧) ∈ ℝ)
193166, 168sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
194193, 191readdcld 10021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
195194adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
196 simplrr 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑑 ∈ ℝ+)
197196rpred 11824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑑 ∈ ℝ)
198 rpre 11791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
199 rpre 11791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 ∈ ℝ+𝑑 ∈ ℝ)
200 min2 11972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑑)
201198, 199, 200syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑑)
202201ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑑)
203188, 197, 181, 202leadd2dd 10594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑔𝑧) + 𝑑))
204181, 197readdcld 10021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔𝑧) + 𝑑) ∈ ℝ)
205 letr 10083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ ∧ ((𝑔𝑧) + 𝑑) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → ((((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑔𝑧) + 𝑑) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)))
206189, 204, 191, 205syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑔𝑧) + 𝑑) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)))
207203, 206mpand 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)))
208207imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧))
209170, 168addge02d 10568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ ℝ) → (0 ≤ (𝐹𝑧) ↔ (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧))))
21017, 209mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
211166, 210sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
212211adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (𝐺𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
213190, 192, 195, 208, 212letrd 10146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
214213adantlr 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
215186, 214eqbrtrd 4640 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
216 breq1 4621 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 = if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) → (0 ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
217 breq1 4621 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) → ((((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)) ↔ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
218216, 217ifboth 4101 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ≤ ((𝐹𝑧) + (𝐺𝑧)) ∧ (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧))) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
219176, 215, 218syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
220219ex 450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → (((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
221220adantld 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
222221adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) ∧ ¬ (𝑔𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
223157, 160, 175, 222ifbothda 4100 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑓𝑧) = 0) → ((0 ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
224155anbi2d 739 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) ↔ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
225224imbi1d 331 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
226158anbi2d 739 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) ↔ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
227226imbi1d 331 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔𝑧) + 𝑑) = if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) → (((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))) ↔ ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))))
228172ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
229 oveq2 6618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑔𝑧) = 0 → ((𝑓𝑧) + (𝑔𝑧)) = ((𝑓𝑧) + 0))
230 simplrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑓 ∈ dom ∫1)
231 i1ff 23366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
232231ffvelrnda 6320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑓 ∈ dom ∫1𝑧 ∈ ℝ) → (𝑓𝑧) ∈ ℝ)
233230, 232sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) ∈ ℝ)
234233recnd 10020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) ∈ ℂ)
235234addid1d 10188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + 0) = (𝑓𝑧))
236229, 235sylan9eqr 2677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) → ((𝑓𝑧) + (𝑔𝑧)) = (𝑓𝑧))
237236oveq1d 6625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
238237adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
239233, 188readdcld 10021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
240239adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ)
241193adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝐹𝑧) ∈ ℝ)
242194adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℝ)
243 simplrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑐 ∈ ℝ+)
244243rpred 11824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑐 ∈ ℝ)
245 min1 11971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑐)
246198, 199, 245syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ ℝ+𝑑 ∈ ℝ+) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑐)
247246ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ≤ 𝑐)
248188, 244, 233, 247leadd2dd 10594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑓𝑧) + 𝑐))
249233, 244readdcld 10021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑧) + 𝑐) ∈ ℝ)
250 letr 10083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ ∧ ((𝑓𝑧) + 𝑐) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → ((((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧)))
251239, 249, 193, 250syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧)))
252248, 251mpand 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧)))
253252imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐹𝑧))
254168, 170addge01d 10567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑧 ∈ ℝ) → (0 ≤ (𝐺𝑧) ↔ (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧))))
25579, 254mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
256166, 255sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
257256adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝐹𝑧) ≤ ((𝐹𝑧) + (𝐺𝑧)))
258240, 241, 242, 253, 257letrd 10146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
259258adantlr 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → ((𝑓𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
260238, 259eqbrtrd 4640 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
261228, 260, 218syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
262261ex 450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (𝑔𝑧) = 0) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
263262adantlr 750 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
264263adantrd 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) ∧ (𝑔𝑧) = 0) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ 0 ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
265172adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → 0 ≤ ((𝐹𝑧) + (𝐺𝑧)))
266188recnd 10020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐𝑑, 𝑐, 𝑑) ∈ ℂ)
267234, 182, 266addassd 10014 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))))
268267adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) = ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))))
269233, 243ltaddrpd 11857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) < ((𝑓𝑧) + 𝑐))
270233, 249, 269ltled 10137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) ≤ ((𝑓𝑧) + 𝑐))
271 letr 10083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑓𝑧) ∈ ℝ ∧ ((𝑓𝑧) + 𝑐) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝑓𝑧) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝑓𝑧) ≤ (𝐹𝑧)))
272233, 249, 193, 271syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) ≤ ((𝑓𝑧) + 𝑐) ∧ ((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧)) → (𝑓𝑧) ≤ (𝐹𝑧)))
273270, 272mpand 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) → (𝑓𝑧) ≤ (𝐹𝑧)))
274 le2add 10462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑓𝑧) ∈ ℝ ∧ ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ ℝ) ∧ ((𝐹𝑧) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ)) → (((𝑓𝑧) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
275233, 189, 193, 191, 274syl22anc 1324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑧) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ (𝐺𝑧)) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
276273, 207, 275syl2and 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
277276imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → ((𝑓𝑧) + ((𝑔𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
278268, 277eqbrtrd 4640 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ≤ ((𝐹𝑧) + (𝐺𝑧)))
279265, 278, 218syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ (((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧))) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧)))
280279ex 450 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
281280ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) ∧ ¬ (𝑔𝑧) = 0) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ ((𝑔𝑧) + 𝑑) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
282225, 227, 264, 281ifbothda 4100 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓𝑧) = 0) → ((((𝑓𝑧) + 𝑐) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
283151, 154, 223, 282ifbothda 4100 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
284283ralimdva 2957 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) → ∀𝑧 ∈ ℝ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
285 ovex 6638 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓𝑧) + 𝑐) ∈ V
28621, 285ifex 4133 . . . . . . . . . . . . . . . . . . . . . . . . 25 if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ∈ V
287286a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ) → if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ∈ V)
288 eqidd 2622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))))
28920, 287, 14, 288, 24ofrfval2 6875 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ↔ ∀𝑧 ∈ ℝ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧)))
290 ovex 6638 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑔𝑧) + 𝑑) ∈ V
29121, 290ifex 4133 . . . . . . . . . . . . . . . . . . . . . . . . 25 if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ∈ V
292291a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ℝ) → if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ∈ V)
293 eqidd 2622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))))
29420, 292, 76, 293, 81ofrfval2 6875 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺 ↔ ∀𝑧 ∈ ℝ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
295289, 294anbi12d 746 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺) ↔ (∀𝑧 ∈ ℝ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ ∀𝑧 ∈ ℝ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
296 r19.26 3058 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)) ↔ (∀𝑧 ∈ ℝ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ ∀𝑧 ∈ ℝ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧)))
297295, 296syl6bbr 278 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺) ↔ ∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
298297ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺) ↔ ∀𝑧 ∈ ℝ (if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐)) ≤ (𝐹𝑧) ∧ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑)) ≤ (𝐺𝑧))))
29919a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ℝ ∈ V)
300 ovex 6638 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)) ∈ V
30121, 300ifex 4133 . . . . . . . . . . . . . . . . . . . . . 22 if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ∈ V
302301a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ∈ V)
303 ovexd 6640 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) + (𝐺𝑧)) ∈ V)
304 ffn 6007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:ℝ⟶ℝ → 𝑓 Fn ℝ)
305231, 304syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 ∈ dom ∫1𝑓 Fn ℝ)
306305adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑓 Fn ℝ)
307306ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑓 Fn ℝ)
308 ffn 6007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑔:ℝ⟶ℝ → 𝑔 Fn ℝ)
309179, 308syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔 ∈ dom ∫1𝑔 Fn ℝ)
310309adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑔 Fn ℝ)
311310ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑔 Fn ℝ)
312 eqidd 2622 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓𝑧) = (𝑓𝑧))
313 eqidd 2622 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔𝑧) = (𝑔𝑧))
314307, 311, 299, 299, 133, 312, 313ofval 6866 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓𝑓 + 𝑔)‘𝑧) = ((𝑓𝑧) + (𝑔𝑧)))
315314eqeq1d 2623 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑓 + 𝑔)‘𝑧) = 0 ↔ ((𝑓𝑧) + (𝑔𝑧)) = 0))
316314oveq1d 6625 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓𝑓 + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)) = (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)))
317315, 316ifbieq2d 4088 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑))) = if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))))
318317mpteq2dva 4709 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) = (𝑧 ∈ ℝ ↦ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑)))))
319 ffn 6007 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:ℝ⟶(0[,)+∞) → 𝐹 Fn ℝ)
32013, 319syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 Fn ℝ)
321 ffn 6007 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺:ℝ⟶(0[,)+∞) → 𝐺 Fn ℝ)
32275, 321syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 Fn ℝ)
323 eqidd 2622 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
324 eqidd 2622 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
325320, 322, 20, 20, 133, 323, 324offval 6864 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧) + (𝐺𝑧))))
326325ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧) + (𝐺𝑧))))
327299, 302, 303, 318, 326ofrfval2 6875 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ((𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ↔ ∀𝑧 ∈ ℝ if(((𝑓𝑧) + (𝑔𝑧)) = 0, 0, (((𝑓𝑧) + (𝑔𝑧)) + if(𝑐𝑑, 𝑐, 𝑑))) ≤ ((𝐹𝑧) + (𝐺𝑧))))
328284, 298, 3273imtr4d 283 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺) → (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺)))
329328imp 445 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺)) → (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))
330 oveq2 6618 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦) = (((𝑓𝑓 + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))
331330ifeq2d 4082 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦)) = if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑))))
332331mpteq2dv 4710 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))))
333332breq1d 4628 . . . . . . . . . . . . . . . . . . 19 (𝑦 = if(𝑐𝑑, 𝑐, 𝑑) → ((𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ↔ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺)))
334333rspcev 3298 . . . . . . . . . . . . . . . . . 18 ((if(𝑐𝑑, 𝑐, 𝑑) ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + if(𝑐𝑑, 𝑐, 𝑑)))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺)) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))
335148, 329, 334syl2anc 692 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺)) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))
336335ex 450 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺)))
337336rexlimdvva 3032 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∃𝑐 ∈ ℝ+𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺)))
338146, 337syl5 34 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺)))
339338a1dd 50 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))))
340339imp31 448 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺))
341 oveq12 6619 . . . . . . . . . . . . . . 15 ((𝑡 = (∫1𝑓) ∧ 𝑢 = (∫1𝑔)) → (𝑡 + 𝑢) = ((∫1𝑓) + (∫1𝑔)))
342341ad2ant2l 781 . . . . . . . . . . . . . 14 (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) → (𝑡 + 𝑢) = ((∫1𝑓) + (∫1𝑔)))
343140, 141itg1add 23391 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (∫1‘(𝑓𝑓 + 𝑔)) = ((∫1𝑓) + (∫1𝑔)))
344343eqcomd 2627 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((∫1𝑓) + (∫1𝑔)) = (∫1‘(𝑓𝑓 + 𝑔)))
345344adantl 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫1𝑓) + (∫1𝑔)) = (∫1‘(𝑓𝑓 + 𝑔)))
346342, 345sylan9eqr 2677 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)))) → (𝑡 + 𝑢) = (∫1‘(𝑓𝑓 + 𝑔)))
347 eqtr 2640 . . . . . . . . . . . . . 14 ((𝑠 = (𝑡 + 𝑢) ∧ (𝑡 + 𝑢) = (∫1‘(𝑓𝑓 + 𝑔))) → 𝑠 = (∫1‘(𝑓𝑓 + 𝑔)))
348347ancoms 469 . . . . . . . . . . . . 13 (((𝑡 + 𝑢) = (∫1‘(𝑓𝑓 + 𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (∫1‘(𝑓𝑓 + 𝑔)))
349346, 348sylan 488 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (∫1‘(𝑓𝑓 + 𝑔)))
350 fveq1 6152 . . . . . . . . . . . . . . . . . . 19 ( = (𝑓𝑓 + 𝑔) → (𝑧) = ((𝑓𝑓 + 𝑔)‘𝑧))
351350eqeq1d 2623 . . . . . . . . . . . . . . . . . 18 ( = (𝑓𝑓 + 𝑔) → ((𝑧) = 0 ↔ ((𝑓𝑓 + 𝑔)‘𝑧) = 0))
352350oveq1d 6625 . . . . . . . . . . . . . . . . . 18 ( = (𝑓𝑓 + 𝑔) → ((𝑧) + 𝑦) = (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))
353351, 352ifbieq2d 4088 . . . . . . . . . . . . . . . . 17 ( = (𝑓𝑓 + 𝑔) → if((𝑧) = 0, 0, ((𝑧) + 𝑦)) = if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦)))
354353mpteq2dv 4710 . . . . . . . . . . . . . . . 16 ( = (𝑓𝑓 + 𝑔) → (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))))
355354breq1d 4628 . . . . . . . . . . . . . . 15 ( = (𝑓𝑓 + 𝑔) → ((𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ↔ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺)))
356355rexbidv 3046 . . . . . . . . . . . . . 14 ( = (𝑓𝑓 + 𝑔) → (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ↔ ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺)))
357 fveq2 6153 . . . . . . . . . . . . . . 15 ( = (𝑓𝑓 + 𝑔) → (∫1) = (∫1‘(𝑓𝑓 + 𝑔)))
358357eqeq2d 2631 . . . . . . . . . . . . . 14 ( = (𝑓𝑓 + 𝑔) → (𝑠 = (∫1) ↔ 𝑠 = (∫1‘(𝑓𝑓 + 𝑔))))
359356, 358anbi12d 746 . . . . . . . . . . . . 13 ( = (𝑓𝑓 + 𝑔) → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) ↔ (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1‘(𝑓𝑓 + 𝑔)))))
360359rspcev 3298 . . . . . . . . . . . 12 (((𝑓𝑓 + 𝑔) ∈ dom ∫1 ∧ (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(((𝑓𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1‘(𝑓𝑓 + 𝑔)))) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)))
361143, 340, 349, 360syl12anc 1321 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)))
362361exp31 629 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)))))
363362rexlimdvva 3032 . . . . . . . . 9 (𝜑 → (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)))))
364363impd 447 . . . . . . . 8 (𝜑 → ((∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1))))
365364exlimdvv 1859 . . . . . . 7 (𝜑 → (∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1))))
366139, 365impbid 202 . . . . . 6 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) ↔ ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))
367 eqeq1 2625 . . . . . . . . . 10 (𝑥 = 𝑡 → (𝑥 = (∫1𝑓) ↔ 𝑡 = (∫1𝑓)))
368367anbi2d 739 . . . . . . . . 9 (𝑥 = 𝑡 → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓)) ↔ (∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓))))
369368rexbidv 3046 . . . . . . . 8 (𝑥 = 𝑡 → (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓)) ↔ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓))))
370369rexab 3355 . . . . . . 7 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)))
371 eqeq1 2625 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥 = (∫1𝑔) ↔ 𝑢 = (∫1𝑔)))
372371anbi2d 739 . . . . . . . . . . . 12 (𝑥 = 𝑢 → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔)) ↔ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))))
373372rexbidv 3046 . . . . . . . . . . 11 (𝑥 = 𝑢 → (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))))
374373rexab 3355 . . . . . . . . . 10 (∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)))
375374anbi2i 729 . . . . . . . . 9 ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))))
376 19.42v 1915 . . . . . . . . 9 (∃𝑢(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))))
377 reeanv 3100 . . . . . . . . . . . 12 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))))
378377anbi1i 730 . . . . . . . . . . 11 ((∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
379 anass 680 . . . . . . . . . . 11 (((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))))
380378, 379bitr2i 265 . . . . . . . . . 10 ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
381380exbii 1771 . . . . . . . . 9 (∃𝑢(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ ∃𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
382375, 376, 3813bitr2i 288 . . . . . . . 8 ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
383382exbii 1771 . . . . . . 7 (∃𝑡(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
384370, 383bitri 264 . . . . . 6 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))
385366, 384syl6bbr 278 . . . . 5 (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)))
386385abbidv 2738 . . . 4 (𝜑 → {𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1))} = {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)})
387386supeq1d 8304 . . 3 (𝜑 → sup({𝑠 ∣ ∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1))}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ))
388 simpr 477 . . . . . . . . 9 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (𝑡 + 𝑢))
3896sseli 3583 . . . . . . . . . . 11 (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} → 𝑡 ∈ ℝ)
390389ad2antrr 761 . . . . . . . . . 10 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑡 ∈ ℝ)
39173sseli 3583 . . . . . . . . . . 11 (𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} → 𝑢 ∈ ℝ)
392391ad2antlr 762 . . . . . . . . . 10 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑢 ∈ ℝ)
393390, 392readdcld 10021 . . . . . . . . 9 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → (𝑡 + 𝑢) ∈ ℝ)
394388, 393eqeltrd 2698 . . . . . . . 8 (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 ∈ ℝ)
395394ex 450 . . . . . . 7 ((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}) → (𝑠 = (𝑡 + 𝑢) → 𝑠 ∈ ℝ))
396395rexlimivv 3030 . . . . . 6 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) → 𝑠 ∈ ℝ)
397396abssi 3661 . . . . 5 {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ
398397a1i 11 . . . 4 (𝜑 → {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ)
399162eqcomi 2630 . . . . . . . 8 0 = (0 + 0)
400 rspceov 6652 . . . . . . . 8 ((0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} ∧ 0 = (0 + 0)) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢))
401399, 400mp3an3 1410 . . . . . . 7 ((0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢))
40248, 103, 401syl2anc 692 . . . . . 6 (𝜑 → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢))
403 eqeq1 2625 . . . . . . . 8 (𝑠 = 0 → (𝑠 = (𝑡 + 𝑢) ↔ 0 = (𝑡 + 𝑢)))
4044032rexbidv 3051 . . . . . . 7 (𝑠 = 0 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢)))
40521, 404spcev 3289 . . . . . 6 (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}0 = (𝑡 + 𝑢) → ∃𝑠𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢))
406402, 405syl 17 . . . . 5 (𝜑 → ∃𝑠𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢))
407 abn0 3933 . . . . 5 ({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅ ↔ ∃𝑠𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢))
408406, 407sylibr 224 . . . 4 (𝜑 → {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅)
40958, 112readdcld 10021 . . . . 5 (𝜑 → (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) ∈ ℝ)
410 simpr 477 . . . . . . . . 9 (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → 𝑏 = (𝑡 + 𝑢))
411389ad2antrl 763 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})) → 𝑡 ∈ ℝ)
412391ad2antll 764 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})) → 𝑢 ∈ ℝ)
41358adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})) → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) ∈ ℝ)
414112adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})) → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ) ∈ ℝ)
415 supxrub 12105 . . . . . . . . . . . . 13 (({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ⊆ ℝ*𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}) → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
41660, 415mpan 705 . . . . . . . . . . . 12 (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
417416ad2antrl 763 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})) → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ))
418 supxrub 12105 . . . . . . . . . . . . 13 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} ⊆ ℝ*𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}) → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
419113, 418mpan 705 . . . . . . . . . . . 12 (𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))} → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
420419ad2antll 764 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})) → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))
421411, 412, 413, 414, 417, 420le2addd 10598 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})) → (𝑡 + 𝑢) ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))
422421adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → (𝑡 + 𝑢) ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))
423410, 422eqbrtrd 4640 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))
424423ex 450 . . . . . . 7 ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))})) → (𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
425424rexlimdvva 3032 . . . . . 6 (𝜑 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
426425alrimiv 1852 . . . . 5 (𝜑 → ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
427 breq2 4622 . . . . . . . 8 (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → (𝑏𝑎𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
428427ralbidv 2981 . . . . . . 7 (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → (∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎 ↔ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
429 eqeq1 2625 . . . . . . . . 9 (𝑠 = 𝑏 → (𝑠 = (𝑡 + 𝑢) ↔ 𝑏 = (𝑡 + 𝑢)))
4304292rexbidv 3051 . . . . . . . 8 (𝑠 = 𝑏 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢)))
431430ralab 3353 . . . . . . 7 (∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) ↔ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < ))))
432428, 431syl6bb 276 . . . . . 6 (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) → (∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎 ↔ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))))
433432rspcev 3298 . . . . 5 (((sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )) ∈ ℝ ∧ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}, ℝ*, < ) + sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}, ℝ*, < )))) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎)
434409, 426, 433syl2anc 692 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎)
435 supxrre 12108 . . . 4 (({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ ∧ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏𝑎) → sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
436398, 408, 434, 435syl3anc 1323 . . 3 (𝜑 → sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
437137, 387, 4363eqtrd 2659 . 2 (𝜑 → (∫2‘(𝐹𝑓 + 𝐺)) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑥 = (∫1𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑥 = (∫1𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < ))
438122, 129, 4373eqtr4rd 2666 1 (𝜑 → (∫2‘(𝐹𝑓 + 𝐺)) = ((∫2𝐹) + (∫2𝐺)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478   = wceq 1480  ∃wex 1701   ∈ wcel 1987  {cab 2607   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  Vcvv 3189   ⊆ wss 3559  ∅c0 3896  ifcif 4063  {csn 4153   class class class wbr 4618   ↦ cmpt 4678   × cxp 5077  dom cdm 5079   Fn wfn 5847  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610   ∘𝑓 cof 6855   ∘𝑟 cofr 6856  supcsup 8298  ℝcr 9887  0cc0 9888   + caddc 9891  +∞cpnf 10023  ℝ*cxr 10025   < clt 10026   ≤ cle 10027  ℕcn 10972  3c3 11023  ℝ+crp 11784  [,)cico 12127  [,]cicc 12128  MblFncmbf 23306  ∫1citg1 23307  ∫2citg2 23308 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-rest 16015  df-topgen 16036  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-top 20631  df-topon 20648  df-bases 20674  df-cmp 21113  df-ovol 23156  df-vol 23157  df-mbf 23311  df-itg1 23312  df-itg2 23313 This theorem is referenced by:  ibladdnclem  33133  itgaddnclem1  33135  iblabsnclem  33140  iblabsnc  33141  iblmulc2nc  33142  ftc1anclem4  33155  ftc1anclem5  33156  ftc1anclem6  33157  ftc1anclem8  33159
 Copyright terms: Public domain W3C validator