Step | Hyp | Ref
| Expression |
1 | | itg2addnc.f2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
2 | | rge0ssre 12493 |
. . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ ℝ |
3 | | fss 6217 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) |
4 | 1, 2, 3 | sylancl 697 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
5 | 4 | ad2antrr 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ 𝐹:ℝ⟶ℝ) |
6 | 5 | ffvelrnda 6523 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (𝐹‘𝑥) ∈
ℝ) |
7 | | rpre 12052 |
. . . . . . . . . 10
⊢ (𝑣 ∈ ℝ+
→ 𝑣 ∈
ℝ) |
8 | | 3re 11306 |
. . . . . . . . . . 11
⊢ 3 ∈
ℝ |
9 | | 3ne0 11327 |
. . . . . . . . . . 11
⊢ 3 ≠
0 |
10 | 8, 9 | pm3.2i 470 |
. . . . . . . . . 10
⊢ (3 ∈
ℝ ∧ 3 ≠ 0) |
11 | | redivcl 10956 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ ℝ ∧ 3 ∈
ℝ ∧ 3 ≠ 0) → (𝑣 / 3) ∈ ℝ) |
12 | 11 | 3expb 1114 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ ℝ ∧ (3 ∈
ℝ ∧ 3 ≠ 0)) → (𝑣 / 3) ∈ ℝ) |
13 | 7, 10, 12 | sylancl 697 |
. . . . . . . . 9
⊢ (𝑣 ∈ ℝ+
→ (𝑣 / 3) ∈
ℝ) |
14 | 13 | ad2antlr 765 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (𝑣 / 3) ∈
ℝ) |
15 | | rpcnne0 12063 |
. . . . . . . . . 10
⊢ (𝑣 ∈ ℝ+
→ (𝑣 ∈ ℂ
∧ 𝑣 ≠
0)) |
16 | | 3cn 11307 |
. . . . . . . . . . 11
⊢ 3 ∈
ℂ |
17 | 16, 9 | pm3.2i 470 |
. . . . . . . . . 10
⊢ (3 ∈
ℂ ∧ 3 ≠ 0) |
18 | | divne0 10909 |
. . . . . . . . . 10
⊢ (((𝑣 ∈ ℂ ∧ 𝑣 ≠ 0) ∧ (3 ∈ ℂ
∧ 3 ≠ 0)) → (𝑣
/ 3) ≠ 0) |
19 | 15, 17, 18 | sylancl 697 |
. . . . . . . . 9
⊢ (𝑣 ∈ ℝ+
→ (𝑣 / 3) ≠
0) |
20 | 19 | ad2antlr 765 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (𝑣 / 3) ≠
0) |
21 | 6, 14, 20 | redivcld 11065 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ ((𝐹‘𝑥) / (𝑣 / 3)) ∈ ℝ) |
22 | | reflcl 12811 |
. . . . . . 7
⊢ (((𝐹‘𝑥) / (𝑣 / 3)) ∈ ℝ →
(⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℝ) |
23 | 21, 22 | syl 17 |
. . . . . 6
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℝ) |
24 | | peano2rem 10560 |
. . . . . 6
⊢
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℝ →
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ∈
ℝ) |
25 | 23, 24 | syl 17 |
. . . . 5
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ∈
ℝ) |
26 | 25, 14 | remulcld 10282 |
. . . 4
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈
ℝ) |
27 | | i1ff 23662 |
. . . . . 6
⊢ (ℎ ∈ dom ∫1
→ ℎ:ℝ⟶ℝ) |
28 | 27 | ad2antlr 765 |
. . . . 5
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ℎ:ℝ⟶ℝ) |
29 | 28 | ffvelrnda 6523 |
. . . 4
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (ℎ‘𝑥) ∈
ℝ) |
30 | 26, 29 | ifcld 4275 |
. . 3
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ ℝ) |
31 | | eqid 2760 |
. . 3
⊢ (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) = (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) |
32 | 30, 31 | fmptd 6549 |
. 2
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ (𝑥 ∈ ℝ
↦ if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))):ℝ⟶ℝ) |
33 | | fzfi 12985 |
. . . . 5
⊢
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ∈ Fin |
34 | | ovex 6842 |
. . . . . . 7
⊢ ((𝑡 − 1) · (𝑣 / 3)) ∈ V |
35 | | eqid 2760 |
. . . . . . 7
⊢ (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) = (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) |
36 | 34, 35 | fnmpti 6183 |
. . . . . 6
⊢ (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) Fn (0...-(⌊‘-((sup(ran
ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) |
37 | | dffn4 6283 |
. . . . . 6
⊢ ((𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) Fn (0...-(⌊‘-((sup(ran
ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↔ (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))) |
38 | 36, 37 | mpbi 220 |
. . . . 5
⊢ (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) |
39 | | fofi 8419 |
. . . . 5
⊢
(((0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ∈ Fin ∧ (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))) → ran (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin) |
40 | 33, 38, 39 | mp2an 710 |
. . . 4
⊢ ran
(𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin |
41 | | i1frn 23663 |
. . . . 5
⊢ (ℎ ∈ dom ∫1
→ ran ℎ ∈
Fin) |
42 | 41 | ad2antlr 765 |
. . . 4
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ran ℎ ∈
Fin) |
43 | | unfi 8394 |
. . . 4
⊢ ((ran
(𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin ∧ ran ℎ ∈ Fin) → (ran (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ) ∈ Fin) |
44 | 40, 42, 43 | sylancr 698 |
. . 3
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ (ran (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ) ∈ Fin) |
45 | | 3nn 11398 |
. . . . . . . . . . . . . . . . 17
⊢ 3 ∈
ℕ |
46 | | nnrp 12055 |
. . . . . . . . . . . . . . . . 17
⊢ (3 ∈
ℕ → 3 ∈ ℝ+) |
47 | 45, 46 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℝ+ |
48 | | rpdivcl 12069 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ ℝ+
∧ 3 ∈ ℝ+) → (𝑣 / 3) ∈
ℝ+) |
49 | 47, 48 | mpan2 709 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ ℝ+
→ (𝑣 / 3) ∈
ℝ+) |
50 | 49 | ad2antlr 765 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (𝑣 / 3) ∈
ℝ+) |
51 | 1 | ad2antrr 764 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ 𝐹:ℝ⟶(0[,)+∞)) |
52 | 51 | ffvelrnda 6523 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (𝐹‘𝑥) ∈
(0[,)+∞)) |
53 | | elrege0 12491 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
54 | 52, 53 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤
(𝐹‘𝑥))) |
55 | 54 | simprd 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ 0 ≤ (𝐹‘𝑥)) |
56 | 6, 50, 55 | divge0d 12125 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ 0 ≤ ((𝐹‘𝑥) / (𝑣 / 3))) |
57 | | flge0nn0 12835 |
. . . . . . . . . . . . 13
⊢ ((((𝐹‘𝑥) / (𝑣 / 3)) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑥) / (𝑣 / 3))) → (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈
ℕ0) |
58 | 21, 56, 57 | syl2anc 696 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈
ℕ0) |
59 | 58 | nn0ge0d 11566 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ 0 ≤ (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))) |
60 | 59 | adantr 472 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑥 ∈ ℝ) ∧
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) → 0 ≤
(⌊‘((𝐹‘𝑥) / (𝑣 / 3)))) |
61 | | frn 6214 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ:ℝ⟶ℝ →
ran ℎ ⊆
ℝ) |
62 | 27, 61 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ ∈ dom ∫1
→ ran ℎ ⊆
ℝ) |
63 | | i1f0rn 23668 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ ∈ dom ∫1
→ 0 ∈ ran ℎ) |
64 | | elex2 3356 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ran ℎ → ∃𝑥 𝑥 ∈ ran ℎ) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ ∈ dom ∫1
→ ∃𝑥 𝑥 ∈ ran ℎ) |
66 | | n0 4074 |
. . . . . . . . . . . . . . . . 17
⊢ (ran
ℎ ≠ ∅ ↔
∃𝑥 𝑥 ∈ ran ℎ) |
67 | 65, 66 | sylibr 224 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ ∈ dom ∫1
→ ran ℎ ≠
∅) |
68 | | fimaxre2 11181 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
ℎ ⊆ ℝ ∧ ran
ℎ ∈ Fin) →
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran ℎ 𝑦 ≤ 𝑥) |
69 | 62, 41, 68 | syl2anc 696 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ ∈ dom ∫1
→ ∃𝑥 ∈
ℝ ∀𝑦 ∈
ran ℎ 𝑦 ≤ 𝑥) |
70 | 62, 67, 69 | 3jca 1123 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ dom ∫1
→ (ran ℎ ⊆
ℝ ∧ ran ℎ ≠
∅ ∧ ∃𝑥
∈ ℝ ∀𝑦
∈ ran ℎ 𝑦 ≤ 𝑥)) |
71 | 70 | ad3antlr 769 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (ran ℎ ⊆
ℝ ∧ ran ℎ ≠
∅ ∧ ∃𝑥
∈ ℝ ∀𝑦
∈ ran ℎ 𝑦 ≤ 𝑥)) |
72 | | ffn 6206 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ:ℝ⟶ℝ →
ℎ Fn
ℝ) |
73 | 27, 72 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ ∈ dom ∫1
→ ℎ Fn
ℝ) |
74 | | dffn3 6215 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ Fn ℝ ↔ ℎ:ℝ⟶ran ℎ) |
75 | 73, 74 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ ∈ dom ∫1
→ ℎ:ℝ⟶ran
ℎ) |
76 | 75 | ad2antlr 765 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ℎ:ℝ⟶ran
ℎ) |
77 | 76 | ffvelrnda 6523 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (ℎ‘𝑥) ∈ ran ℎ) |
78 | | suprub 11196 |
. . . . . . . . . . . . . 14
⊢ (((ran
ℎ ⊆ ℝ ∧ ran
ℎ ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran ℎ 𝑦 ≤ 𝑥) ∧ (ℎ‘𝑥) ∈ ran ℎ) → (ℎ‘𝑥) ≤ sup(ran ℎ, ℝ, < )) |
79 | 71, 77, 78 | syl2anc 696 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (ℎ‘𝑥) ≤ sup(ran ℎ, ℝ, <
)) |
80 | | suprcl 11195 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
ℎ ⊆ ℝ ∧ ran
ℎ ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran ℎ 𝑦 ≤ 𝑥) → sup(ran ℎ, ℝ, < ) ∈
ℝ) |
81 | 62, 67, 69, 80 | syl3anc 1477 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ ∈ dom ∫1
→ sup(ran ℎ, ℝ,
< ) ∈ ℝ) |
82 | 81 | ad3antlr 769 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ sup(ran ℎ, ℝ,
< ) ∈ ℝ) |
83 | | letr 10343 |
. . . . . . . . . . . . . . 15
⊢
(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ ∧
(ℎ‘𝑥) ∈ ℝ ∧ sup(ran ℎ, ℝ, < ) ∈ ℝ)
→ (((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≤ sup(ran ℎ, ℝ, < )) →
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran ℎ, ℝ, <
))) |
84 | 26, 29, 82, 83 | syl3anc 1477 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≤ sup(ran ℎ, ℝ, < )) →
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran ℎ, ℝ, <
))) |
85 | 25, 82, 50 | lemuldivd 12134 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ ((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran ℎ, ℝ, < ) ↔
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ≤ (sup(ran ℎ, ℝ, < ) / (𝑣 / 3)))) |
86 | | 1red 10267 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ 1 ∈ ℝ) |
87 | 82, 14, 20 | redivcld 11065 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (sup(ran ℎ, ℝ,
< ) / (𝑣 / 3)) ∈
ℝ) |
88 | 23, 86, 87 | lesubaddd 10836 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ≤ (sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) ↔
(⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ ((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) |
89 | 85, 88 | bitrd 268 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ ((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran ℎ, ℝ, < ) ↔
(⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ ((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) |
90 | | peano2re 10421 |
. . . . . . . . . . . . . . . . . 18
⊢ ((sup(ran
ℎ, ℝ, < ) / (𝑣 / 3)) ∈ ℝ →
((sup(ran ℎ, ℝ, < )
/ (𝑣 / 3)) + 1) ∈
ℝ) |
91 | 87, 90 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ ((sup(ran ℎ, ℝ,
< ) / (𝑣 / 3)) + 1)
∈ ℝ) |
92 | | ceige 12858 |
. . . . . . . . . . . . . . . . 17
⊢
(((sup(ran ℎ,
ℝ, < ) / (𝑣 / 3))
+ 1) ∈ ℝ → ((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran
ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ ((sup(ran ℎ, ℝ,
< ) / (𝑣 / 3)) + 1) ≤
-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) |
94 | | ceicl 12856 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((sup(ran ℎ,
ℝ, < ) / (𝑣 / 3))
+ 1) ∈ ℝ → -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ) |
95 | 91, 94 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ) |
96 | 95 | zred 11694 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℝ) |
97 | | letr 10343 |
. . . . . . . . . . . . . . . . 17
⊢
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℝ ∧ ((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ ∧
-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℝ) →
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ ((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1) ∧ ((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1) ≤
-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) → (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))) |
98 | 23, 91, 96, 97 | syl3anc 1477 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ ((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1) ∧ ((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1) ≤
-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) → (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))) |
99 | 93, 98 | mpan2d 712 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ ((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1) → (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))) |
100 | 89, 99 | sylbid 230 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ ((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran ℎ, ℝ, < ) →
(⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))) |
101 | 84, 100 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≤ sup(ran ℎ, ℝ, < )) →
(⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))) |
102 | 79, 101 | mpan2d 712 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ ((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) → (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))) |
103 | 102 | adantrd 485 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) → (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))) |
104 | 103 | imp 444 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑥 ∈ ℝ) ∧
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) → (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) |
105 | 21 | flcld 12813 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℤ) |
106 | 105 | adantr 472 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑥 ∈ ℝ) ∧
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) → (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℤ) |
107 | | 0zd 11601 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑥 ∈ ℝ) ∧
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) → 0 ∈
ℤ) |
108 | 95 | adantr 472 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑥 ∈ ℝ) ∧
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) → -(⌊‘-((sup(ran
ℎ, ℝ, < ) / (𝑣 / 3)) + 1)) ∈
ℤ) |
109 | | elfz 12545 |
. . . . . . . . . . 11
⊢
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℤ ∧ 0 ∈ ℤ
∧ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ) →
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↔ (0 ≤
(⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∧ (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))))) |
110 | 106, 107,
108, 109 | syl3anc 1477 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑥 ∈ ℝ) ∧
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) → ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↔ (0 ≤
(⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∧ (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))))) |
111 | 60, 104, 110 | mpbir2and 995 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑥 ∈ ℝ) ∧
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) → (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))) |
112 | | eqid 2760 |
. . . . . . . . 9
⊢
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) =
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) |
113 | | oveq1 6821 |
. . . . . . . . . . . 12
⊢ (𝑡 = (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) → (𝑡 − 1) = ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1)) |
114 | 113 | oveq1d 6829 |
. . . . . . . . . . 11
⊢ (𝑡 = (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) → ((𝑡 − 1) · (𝑣 / 3)) = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) |
115 | 114 | eqeq2d 2770 |
. . . . . . . . . 10
⊢ (𝑡 = (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) → ((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)) ↔ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) =
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))) |
116 | 115 | rspcev 3449 |
. . . . . . . . 9
⊢
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ∧ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) =
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) → ∃𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3))) |
117 | 111, 112,
116 | sylancl 697 |
. . . . . . . 8
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑥 ∈ ℝ) ∧
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) → ∃𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) +
1)))(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3))) |
118 | | ovex 6842 |
. . . . . . . . 9
⊢
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ V |
119 | 35 | elrnmpt 5527 |
. . . . . . . . 9
⊢
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ V →
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ↔ ∃𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) +
1)))(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))) |
120 | 118, 119 | ax-mp 5 |
. . . . . . . 8
⊢
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ↔ ∃𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) +
1)))(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3))) |
121 | 117, 120 | sylibr 224 |
. . . . . . 7
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑥 ∈ ℝ) ∧
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) → (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))) |
122 | | elun1 3923 |
. . . . . . 7
⊢
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) → (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ (ran (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ)) |
123 | 121, 122 | syl 17 |
. . . . . 6
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑥 ∈ ℝ) ∧
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) → (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ (ran (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ)) |
124 | | elun2 3924 |
. . . . . . . 8
⊢ ((ℎ‘𝑥) ∈ ran ℎ → (ℎ‘𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ)) |
125 | 77, 124 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (ℎ‘𝑥) ∈ (ran (𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ)) |
126 | 125 | adantr 472 |
. . . . . 6
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ¬
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) → (ℎ‘𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ)) |
127 | 123, 126 | ifclda 4264 |
. . . . 5
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ)) |
128 | 127, 31 | fmptd 6549 |
. . . 4
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ (𝑥 ∈ ℝ
↦ if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))):ℝ⟶(ran (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ)) |
129 | | frn 6214 |
. . . 4
⊢ ((𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))):ℝ⟶(ran (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ) → ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ)) |
130 | 128, 129 | syl 17 |
. . 3
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ran (𝑥 ∈
ℝ ↦ if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ)) |
131 | | ssfi 8347 |
. . 3
⊢ (((ran
(𝑡 ∈
(0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ) ∈ Fin ∧ ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran ℎ, ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ℎ)) → ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∈ Fin) |
132 | 44, 130, 131 | syl2anc 696 |
. 2
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ran (𝑥 ∈
ℝ ↦ if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∈ Fin) |
133 | 31 | mptpreima 5789 |
. . . 4
⊢ (◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) = {𝑥 ∈ ℝ ∣
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡}} |
134 | | unrab 4041 |
. . . . 5
⊢ ({𝑥 ∈ ℝ ∣
(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} ∪ {𝑥 ∈ ℝ ∣ ((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0) ∧ 𝑡 = (ℎ‘𝑥))}) = {𝑥 ∈ ℝ ∣
((((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0) ∧ 𝑡 = (ℎ‘𝑥)))} |
135 | | inrab 4042 |
. . . . . . . 8
⊢ ({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) = {𝑥 ∈ ℝ ∣
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)} |
136 | 135 | ineq1i 3953 |
. . . . . . 7
⊢ (({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = ({𝑥 ∈ ℝ ∣
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) |
137 | | inrab 4042 |
. . . . . . 7
⊢ ({𝑥 ∈ ℝ ∣
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = {𝑥 ∈ ℝ ∣
(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} |
138 | 136, 137 | eqtri 2782 |
. . . . . 6
⊢ (({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = {𝑥 ∈ ℝ ∣
(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} |
139 | | unrab 4041 |
. . . . . . . 8
⊢ ({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) = {𝑥 ∈ ℝ ∣ (¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0)} |
140 | 139 | ineq1i 3953 |
. . . . . . 7
⊢ (({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)}) = ({𝑥 ∈ ℝ ∣ (¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)}) |
141 | | inrab 4042 |
. . . . . . 7
⊢ ({𝑥 ∈ ℝ ∣ (¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)}) = {𝑥 ∈ ℝ ∣ ((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0) ∧ 𝑡 = (ℎ‘𝑥))} |
142 | 140, 141 | eqtri 2782 |
. . . . . 6
⊢ (({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)}) = {𝑥 ∈ ℝ ∣ ((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0) ∧ 𝑡 = (ℎ‘𝑥))} |
143 | 138, 142 | uneq12i 3908 |
. . . . 5
⊢ ((({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)})) = ({𝑥 ∈ ℝ ∣
(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} ∪ {𝑥 ∈ ℝ ∣ ((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0) ∧ 𝑡 = (ℎ‘𝑥))}) |
144 | | eqcom 2767 |
. . . . . . 7
⊢
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) = 𝑡 ↔ 𝑡 = if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) |
145 | | fvex 6363 |
. . . . . . . . 9
⊢ (ℎ‘𝑥) ∈ V |
146 | 118, 145 | ifex 4300 |
. . . . . . . 8
⊢
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ V |
147 | 146 | elsn 4336 |
. . . . . . 7
⊢
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ↔ if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) = 𝑡) |
148 | | ianor 510 |
. . . . . . . . . . 11
⊢ (¬
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ↔ (¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ ¬ (ℎ‘𝑥) ≠ 0)) |
149 | | nne 2936 |
. . . . . . . . . . . 12
⊢ (¬
(ℎ‘𝑥) ≠ 0 ↔ (ℎ‘𝑥) = 0) |
150 | 149 | orbi2i 542 |
. . . . . . . . . . 11
⊢ ((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ ¬ (ℎ‘𝑥) ≠ 0) ↔ (¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0)) |
151 | 148, 150 | bitr2i 265 |
. . . . . . . . . 10
⊢ ((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0) ↔ ¬ ((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) |
152 | 151 | anbi1i 733 |
. . . . . . . . 9
⊢ (((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0) ∧ 𝑡 = (ℎ‘𝑥)) ↔ (¬ ((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (ℎ‘𝑥))) |
153 | 152 | orbi2i 542 |
. . . . . . . 8
⊢
(((((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0) ∧ 𝑡 = (ℎ‘𝑥))) ↔ ((((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ (¬
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (ℎ‘𝑥)))) |
154 | | eqif 4270 |
. . . . . . . 8
⊢ (𝑡 = if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ↔ ((((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ (¬
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (ℎ‘𝑥)))) |
155 | 153, 154 | bitr4i 267 |
. . . . . . 7
⊢
(((((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0) ∧ 𝑡 = (ℎ‘𝑥))) ↔ 𝑡 = if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) |
156 | 144, 147,
155 | 3bitr4i 292 |
. . . . . 6
⊢
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ↔ ((((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0) ∧ 𝑡 = (ℎ‘𝑥)))) |
157 | 156 | rabbii 3325 |
. . . . 5
⊢ {𝑥 ∈ ℝ ∣
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡}} = {𝑥 ∈ ℝ ∣
((((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∨ (ℎ‘𝑥) = 0) ∧ 𝑡 = (ℎ‘𝑥)))} |
158 | 134, 143,
157 | 3eqtr4ri 2793 |
. . . 4
⊢ {𝑥 ∈ ℝ ∣
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡}} = ((({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)})) |
159 | 133, 158 | eqtri 2782 |
. . 3
⊢ (◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) = ((({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)})) |
160 | | eldifi 3875 |
. . . . . 6
⊢ (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∖ {0}) → 𝑡 ∈ ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)))) |
161 | | frn 6214 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))):ℝ⟶ℝ → ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ⊆ ℝ) |
162 | 32, 161 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ran (𝑥 ∈
ℝ ↦ if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ⊆ ℝ) |
163 | 162 | sseld 3743 |
. . . . . 6
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ (𝑡 ∈ ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) → 𝑡 ∈ ℝ)) |
164 | 160, 163 | syl5 34 |
. . . . 5
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ (𝑡 ∈ (ran
(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∖ {0}) → 𝑡 ∈ ℝ)) |
165 | 164 | imdistani 728 |
. . . 4
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∖ {0})) → (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈
ℝ)) |
166 | | rabiun 33713 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ∪ 𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = ∪
𝑡 ∈ ran ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} |
167 | | cnvimarndm 5644 |
. . . . . . . . . . . . . 14
⊢ (◡ℎ “ ran ℎ) = dom ℎ |
168 | | iunid 4727 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑡 ∈ ran ℎ{𝑡} = ran ℎ |
169 | 168 | imaeq2i 5622 |
. . . . . . . . . . . . . . 15
⊢ (◡ℎ “ ∪
𝑡 ∈ ran ℎ{𝑡}) = (◡ℎ “ ran ℎ) |
170 | | imaiun 6667 |
. . . . . . . . . . . . . . 15
⊢ (◡ℎ “ ∪
𝑡 ∈ ran ℎ{𝑡}) = ∪
𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) |
171 | 169, 170 | eqtr3i 2784 |
. . . . . . . . . . . . . 14
⊢ (◡ℎ “ ran ℎ) = ∪ 𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) |
172 | 167, 171 | eqtr3i 2784 |
. . . . . . . . . . . . 13
⊢ dom ℎ = ∪ 𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) |
173 | | fdm 6212 |
. . . . . . . . . . . . . 14
⊢ (ℎ:ℝ⟶ℝ →
dom ℎ =
ℝ) |
174 | 27, 173 | syl 17 |
. . . . . . . . . . . . 13
⊢ (ℎ ∈ dom ∫1
→ dom ℎ =
ℝ) |
175 | 172, 174 | syl5eqr 2808 |
. . . . . . . . . . . 12
⊢ (ℎ ∈ dom ∫1
→ ∪ 𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) = ℝ) |
176 | 175 | ad2antlr 765 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ∪ 𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) = ℝ) |
177 | | rabeq 3332 |
. . . . . . . . . . 11
⊢ (∪ 𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) = ℝ → {𝑥 ∈ ∪
𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = {𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)}) |
178 | 176, 177 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ {𝑥 ∈ ∪ 𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = {𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)}) |
179 | 166, 178 | syl5eqr 2808 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ∪ 𝑡 ∈ ran ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = {𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)}) |
180 | | fniniseg 6502 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ Fn ℝ → (𝑥 ∈ (◡ℎ “ {𝑡}) ↔ (𝑥 ∈ ℝ ∧ (ℎ‘𝑥) = 𝑡))) |
181 | 27, 72, 180 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ ∈ dom ∫1
→ (𝑥 ∈ (◡ℎ “ {𝑡}) ↔ (𝑥 ∈ ℝ ∧ (ℎ‘𝑥) = 𝑡))) |
182 | 181 | simplbda 655 |
. . . . . . . . . . . . . . . 16
⊢ ((ℎ ∈ dom ∫1
∧ 𝑥 ∈ (◡ℎ “ {𝑡})) → (ℎ‘𝑥) = 𝑡) |
183 | 182 | breq2d 4816 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ∈ dom ∫1
∧ 𝑥 ∈ (◡ℎ “ {𝑡})) → ((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ↔ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡)) |
184 | 183 | rabbidva 3328 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ dom ∫1
→ {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}) |
185 | | inrab2 4043 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡})) = {𝑥 ∈ (ℝ ∩ (◡ℎ “ {𝑡})) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} |
186 | | imassrn 5635 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡ℎ “ {𝑡}) ⊆ ran ◡ℎ |
187 | | dfdm4 5471 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom ℎ = ran ◡ℎ |
188 | 187, 174 | syl5eqr 2808 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ ∈ dom ∫1
→ ran ◡ℎ = ℝ) |
189 | 186, 188 | syl5sseq 3794 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ {𝑡}) ⊆ ℝ) |
190 | | sseqin2 3960 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡ℎ “ {𝑡}) ⊆ ℝ ↔ (ℝ ∩
(◡ℎ “ {𝑡})) = (◡ℎ “ {𝑡})) |
191 | 189, 190 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ ∈ dom ∫1
→ (ℝ ∩ (◡ℎ “ {𝑡})) = (◡ℎ “ {𝑡})) |
192 | | rabeq 3332 |
. . . . . . . . . . . . . . . 16
⊢ ((ℝ
∩ (◡ℎ “ {𝑡})) = (◡ℎ “ {𝑡}) → {𝑥 ∈ (ℝ ∩ (◡ℎ “ {𝑡})) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}) |
193 | 191, 192 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ dom ∫1
→ {𝑥 ∈ (ℝ
∩ (◡ℎ “ {𝑡})) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}) |
194 | 185, 193 | syl5eq 2806 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ dom ∫1
→ ({𝑥 ∈ ℝ
∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡})) = {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}) |
195 | 184, 194 | eqtr4d 2797 |
. . . . . . . . . . . . 13
⊢ (ℎ ∈ dom ∫1
→ {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = ({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡}))) |
196 | 195 | ad3antlr 769 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = ({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡}))) |
197 | 25 | adantlr 753 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ∈
ℝ) |
198 | 62 | ad2antlr 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ran ℎ ⊆
ℝ) |
199 | 198 | sselda 3744 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → 𝑡 ∈ ℝ) |
200 | 199 | adantr 472 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℝ) |
201 | 49 | ad3antlr 769 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈
ℝ+) |
202 | 197, 200,
201 | lemuldivd 12134 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) →
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡 ↔ ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ≤ (𝑡 / (𝑣 / 3)))) |
203 | 23 | adantlr 753 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℝ) |
204 | | 1red 10267 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → 1 ∈
ℝ) |
205 | 13 | ad3antlr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ) |
206 | 19 | ad3antlr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0) |
207 | 200, 205,
206 | redivcld 11065 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ) |
208 | 203, 204,
207 | lesubaddd 10836 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) →
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ≤ (𝑡 / (𝑣 / 3)) ↔ (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1))) |
209 | 6 | adantlr 753 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
210 | | peano2re 10421 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 / (𝑣 / 3)) ∈ ℝ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ) |
211 | 207, 210 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ) |
212 | | reflcl 12811 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ →
(⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈
ℝ) |
213 | 211, 212 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈
ℝ) |
214 | | peano2re 10421 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((⌊‘((𝑡
/ (𝑣 / 3)) + 1)) ∈
ℝ → ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ∈
ℝ) |
215 | 213, 214 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝑡 /
(𝑣 / 3)) + 1)) + 1) ∈
ℝ) |
216 | 209, 215,
201 | ltdivmuld 12136 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ↔ (𝐹‘𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) |
217 | 21 | adantlr 753 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) / (𝑣 / 3)) ∈ ℝ) |
218 | | flflp1 12822 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑥) / (𝑣 / 3)) ∈ ℝ ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ) →
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ ((𝐹‘𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) |
219 | 217, 211,
218 | syl2anc 696 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ ((𝐹‘𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) |
220 | 205, 215 | remulcld 10282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈
ℝ) |
221 | 220 | rexrd 10301 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈
ℝ*) |
222 | | elioomnf 12481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑣 / 3) ·
((⌊‘((𝑡 /
(𝑣 / 3)) + 1)) + 1)) ∈
ℝ* → ((𝐹‘𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))) |
223 | 221, 222 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))) |
224 | 209 | biantrurd 530 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))) |
225 | 223, 224 | bitr4d 271 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ (𝐹‘𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) |
226 | 216, 219,
225 | 3bitr4d 300 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ (𝐹‘𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))) |
227 | 202, 208,
226 | 3bitrd 294 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ran ℎ) ∧ 𝑥 ∈ ℝ) →
((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡 ↔ (𝐹‘𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))) |
228 | 227 | rabbidva 3328 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → {𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ℝ ∣ (𝐹‘𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))}) |
229 | 1 | feqmptd 6412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
230 | 229 | cnveqd 5453 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ◡𝐹 = ◡(𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
231 | 230 | imaeq1d 5623 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (◡𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = (◡(𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))) |
232 | | eqid 2760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) |
233 | 232 | mptpreima 5789 |
. . . . . . . . . . . . . . . . 17
⊢ (◡(𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹‘𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))} |
234 | 231, 233 | syl6eq 2810 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (◡𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹‘𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))}) |
235 | 234 | ad3antrrr 768 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → (◡𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹‘𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))}) |
236 | 228, 235 | eqtr4d 2797 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → {𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = (◡𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))) |
237 | | itg2addnc.f1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 ∈ MblFn) |
238 | | mbfima 23618 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom
vol) |
239 | 237, 4, 238 | syl2anc 696 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (◡𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom
vol) |
240 | 239 | ad3antrrr 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → (◡𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom
vol) |
241 | 236, 240 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → {𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol) |
242 | 62 | sseld 3743 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ ∈ dom ∫1
→ (𝑡 ∈ ran ℎ → 𝑡 ∈ ℝ)) |
243 | 242 | ad2antlr 765 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ (𝑡 ∈ ran ℎ → 𝑡 ∈ ℝ)) |
244 | 243 | imdistani 728 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈
ℝ)) |
245 | | i1fmbf 23661 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ ∈ dom ∫1
→ ℎ ∈
MblFn) |
246 | 245, 27 | jca 555 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ ∈ dom ∫1
→ (ℎ ∈ MblFn ∧
ℎ:ℝ⟶ℝ)) |
247 | 246 | ad2antlr 765 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ (ℎ ∈ MblFn ∧
ℎ:ℝ⟶ℝ)) |
248 | | mbfimasn 23620 |
. . . . . . . . . . . . . . . 16
⊢ ((ℎ ∈ MblFn ∧ ℎ:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
(◡ℎ “ {𝑡}) ∈ dom vol) |
249 | 248 | 3expa 1112 |
. . . . . . . . . . . . . . 15
⊢ (((ℎ ∈ MblFn ∧ ℎ:ℝ⟶ℝ) ∧
𝑡 ∈ ℝ) →
(◡ℎ “ {𝑡}) ∈ dom vol) |
250 | 247, 249 | sylan 489 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (◡ℎ “ {𝑡}) ∈ dom vol) |
251 | 244, 250 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → (◡ℎ “ {𝑡}) ∈ dom vol) |
252 | | inmbl 23530 |
. . . . . . . . . . . . 13
⊢ (({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol ∧ (◡ℎ “ {𝑡}) ∈ dom vol) → ({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡})) ∈ dom vol) |
253 | 241, 251,
252 | syl2anc 696 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → ({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡})) ∈ dom vol) |
254 | 196, 253 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) |
255 | 254 | ralrimiva 3104 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ∀𝑡 ∈ ran
ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) |
256 | | finiunmbl 23532 |
. . . . . . . . . 10
⊢ ((ran
ℎ ∈ Fin ∧
∀𝑡 ∈ ran ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) → ∪ 𝑡 ∈ ran ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) |
257 | 42, 255, 256 | syl2anc 696 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ∪ 𝑡 ∈ ran ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) |
258 | 179, 257 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ {𝑥 ∈ ℝ
∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) |
259 | | unrab 4041 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ (-∞(,)0)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ (0(,)+∞)}) = {𝑥 ∈ ℝ ∣ ((ℎ‘𝑥) ∈ (-∞(,)0) ∨ (ℎ‘𝑥) ∈ (0(,)+∞))} |
260 | 27 | feqmptd 6412 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ dom ∫1
→ ℎ = (𝑥 ∈ ℝ ↦ (ℎ‘𝑥))) |
261 | 260 | cnveqd 5453 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ dom ∫1
→ ◡ℎ = ◡(𝑥 ∈ ℝ ↦ (ℎ‘𝑥))) |
262 | 261 | imaeq1d 5623 |
. . . . . . . . . . . . 13
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ (-∞(,)0)) = (◡(𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) “ (-∞(,)0))) |
263 | | eqid 2760 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) = (𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) |
264 | 263 | mptpreima 5789 |
. . . . . . . . . . . . 13
⊢ (◡(𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) “ (-∞(,)0)) = {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ (-∞(,)0)} |
265 | 262, 264 | syl6eq 2810 |
. . . . . . . . . . . 12
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ (-∞(,)0)) = {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ (-∞(,)0)}) |
266 | 261 | imaeq1d 5623 |
. . . . . . . . . . . . 13
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ (0(,)+∞)) = (◡(𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) “ (0(,)+∞))) |
267 | 263 | mptpreima 5789 |
. . . . . . . . . . . . 13
⊢ (◡(𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) “ (0(,)+∞)) = {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ (0(,)+∞)} |
268 | 266, 267 | syl6eq 2810 |
. . . . . . . . . . . 12
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ (0(,)+∞)) = {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ (0(,)+∞)}) |
269 | 265, 268 | uneq12d 3911 |
. . . . . . . . . . 11
⊢ (ℎ ∈ dom ∫1
→ ((◡ℎ “ (-∞(,)0)) ∪ (◡ℎ “ (0(,)+∞))) = ({𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ (-∞(,)0)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ (0(,)+∞)})) |
270 | 27 | ffvelrnda 6523 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (ℎ‘𝑥) ∈
ℝ) |
271 | | 0re 10252 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
272 | | lttri2 10332 |
. . . . . . . . . . . . . . 15
⊢ (((ℎ‘𝑥) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((ℎ‘𝑥) ≠ 0 ↔ ((ℎ‘𝑥) < 0 ∨ 0 < (ℎ‘𝑥)))) |
273 | 271, 272 | mpan2 709 |
. . . . . . . . . . . . . 14
⊢ ((ℎ‘𝑥) ∈ ℝ → ((ℎ‘𝑥) ≠ 0 ↔ ((ℎ‘𝑥) < 0 ∨ 0 < (ℎ‘𝑥)))) |
274 | | ibar 526 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ‘𝑥) ∈ ℝ → (((ℎ‘𝑥) < 0 ∨ 0 < (ℎ‘𝑥)) ↔ ((ℎ‘𝑥) ∈ ℝ ∧ ((ℎ‘𝑥) < 0 ∨ 0 < (ℎ‘𝑥))))) |
275 | | andi 947 |
. . . . . . . . . . . . . . . 16
⊢ (((ℎ‘𝑥) ∈ ℝ ∧ ((ℎ‘𝑥) < 0 ∨ 0 < (ℎ‘𝑥))) ↔ (((ℎ‘𝑥) ∈ ℝ ∧ (ℎ‘𝑥) < 0) ∨ ((ℎ‘𝑥) ∈ ℝ ∧ 0 < (ℎ‘𝑥)))) |
276 | | 0xr 10298 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ* |
277 | | elioomnf 12481 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℝ* → ((ℎ‘𝑥) ∈ (-∞(,)0) ↔ ((ℎ‘𝑥) ∈ ℝ ∧ (ℎ‘𝑥) < 0))) |
278 | | elioopnf 12480 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℝ* → ((ℎ‘𝑥) ∈ (0(,)+∞) ↔ ((ℎ‘𝑥) ∈ ℝ ∧ 0 < (ℎ‘𝑥)))) |
279 | 277, 278 | orbi12d 748 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
ℝ* → (((ℎ‘𝑥) ∈ (-∞(,)0) ∨ (ℎ‘𝑥) ∈ (0(,)+∞)) ↔ (((ℎ‘𝑥) ∈ ℝ ∧ (ℎ‘𝑥) < 0) ∨ ((ℎ‘𝑥) ∈ ℝ ∧ 0 < (ℎ‘𝑥))))) |
280 | 276, 279 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (((ℎ‘𝑥) ∈ (-∞(,)0) ∨ (ℎ‘𝑥) ∈ (0(,)+∞)) ↔ (((ℎ‘𝑥) ∈ ℝ ∧ (ℎ‘𝑥) < 0) ∨ ((ℎ‘𝑥) ∈ ℝ ∧ 0 < (ℎ‘𝑥)))) |
281 | 275, 280 | bitr4i 267 |
. . . . . . . . . . . . . . 15
⊢ (((ℎ‘𝑥) ∈ ℝ ∧ ((ℎ‘𝑥) < 0 ∨ 0 < (ℎ‘𝑥))) ↔ ((ℎ‘𝑥) ∈ (-∞(,)0) ∨ (ℎ‘𝑥) ∈ (0(,)+∞))) |
282 | 274, 281 | syl6bb 276 |
. . . . . . . . . . . . . 14
⊢ ((ℎ‘𝑥) ∈ ℝ → (((ℎ‘𝑥) < 0 ∨ 0 < (ℎ‘𝑥)) ↔ ((ℎ‘𝑥) ∈ (-∞(,)0) ∨ (ℎ‘𝑥) ∈ (0(,)+∞)))) |
283 | 273, 282 | bitrd 268 |
. . . . . . . . . . . . 13
⊢ ((ℎ‘𝑥) ∈ ℝ → ((ℎ‘𝑥) ≠ 0 ↔ ((ℎ‘𝑥) ∈ (-∞(,)0) ∨ (ℎ‘𝑥) ∈ (0(,)+∞)))) |
284 | 270, 283 | syl 17 |
. . . . . . . . . . . 12
⊢ ((ℎ ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((ℎ‘𝑥) ≠ 0 ↔ ((ℎ‘𝑥) ∈ (-∞(,)0) ∨ (ℎ‘𝑥) ∈ (0(,)+∞)))) |
285 | 284 | rabbidva 3328 |
. . . . . . . . . . 11
⊢ (ℎ ∈ dom ∫1
→ {𝑥 ∈ ℝ
∣ (ℎ‘𝑥) ≠ 0} = {𝑥 ∈ ℝ ∣ ((ℎ‘𝑥) ∈ (-∞(,)0) ∨ (ℎ‘𝑥) ∈ (0(,)+∞))}) |
286 | 259, 269,
285 | 3eqtr4a 2820 |
. . . . . . . . . 10
⊢ (ℎ ∈ dom ∫1
→ ((◡ℎ “ (-∞(,)0)) ∪ (◡ℎ “ (0(,)+∞))) = {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) |
287 | | i1fima 23664 |
. . . . . . . . . . 11
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ (-∞(,)0)) ∈ dom
vol) |
288 | | i1fima 23664 |
. . . . . . . . . . 11
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ (0(,)+∞)) ∈ dom
vol) |
289 | | unmbl 23525 |
. . . . . . . . . . 11
⊢ (((◡ℎ “ (-∞(,)0)) ∈ dom vol ∧
(◡ℎ “ (0(,)+∞)) ∈ dom vol)
→ ((◡ℎ “ (-∞(,)0)) ∪ (◡ℎ “ (0(,)+∞))) ∈ dom
vol) |
290 | 287, 288,
289 | syl2anc 696 |
. . . . . . . . . 10
⊢ (ℎ ∈ dom ∫1
→ ((◡ℎ “ (-∞(,)0)) ∪ (◡ℎ “ (0(,)+∞))) ∈ dom
vol) |
291 | 286, 290 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (ℎ ∈ dom ∫1
→ {𝑥 ∈ ℝ
∣ (ℎ‘𝑥) ≠ 0} ∈ dom
vol) |
292 | 291 | ad2antlr 765 |
. . . . . . . 8
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ {𝑥 ∈ ℝ
∣ (ℎ‘𝑥) ≠ 0} ∈ dom
vol) |
293 | | inmbl 23530 |
. . . . . . . 8
⊢ (({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0} ∈ dom vol) → ({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∈ dom vol) |
294 | 258, 292,
293 | syl2anc 696 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ({𝑥 ∈ ℝ
∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∈ dom vol) |
295 | 294 | adantr 472 |
. . . . . 6
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ ({𝑥 ∈ ℝ
∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∈ dom vol) |
296 | 23 | recnd 10280 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℂ) |
297 | 296 | adantlr 753 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℂ) |
298 | | 1cnd 10268 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 1 ∈
ℂ) |
299 | | simplr 809 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℝ) |
300 | 13 | ad3antlr 769 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ) |
301 | 19 | ad3antlr 769 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0) |
302 | 299, 300,
301 | redivcld 11065 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ) |
303 | 302 | recnd 10280 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℂ) |
304 | 297, 298,
303 | subadd2d 10623 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3))))) |
305 | | eqcom 2767 |
. . . . . . . . . 10
⊢
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ (𝑡 / (𝑣 / 3)) = ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1)) |
306 | | recn 10238 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ → 𝑡 ∈
ℂ) |
307 | 306 | ad2antlr 765 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℂ) |
308 | 25 | recnd 10280 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ∈
ℂ) |
309 | 308 | adantlr 753 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ∈
ℂ) |
310 | 13 | recnd 10280 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ ℝ+
→ (𝑣 / 3) ∈
ℂ) |
311 | 310 | ad3antlr 769 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℂ) |
312 | 307, 309,
311, 301 | divmul3d 11047 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) = ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ↔ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))) |
313 | 305, 312 | syl5bb 272 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))) |
314 | 304, 313 | bitr3d 270 |
. . . . . . . 8
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ↔ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))) |
315 | 314 | rabbidva 3328 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ {𝑥 ∈ ℝ
∣ ((𝑡 / (𝑣 / 3)) + 1) =
(⌊‘((𝐹‘𝑥) / (𝑣 / 3)))} = {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) |
316 | | imaundi 5703 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((◡𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (◡𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) |
317 | 230 | ad4antr 771 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ◡𝐹 = ◡(𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
318 | | zre 11593 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ) |
319 | 318 | adantl 473 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ) |
320 | 13 | ad3antlr 769 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈
ℝ) |
321 | 319, 320 | remulcld 10282 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ) |
322 | 321 | rexrd 10301 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈
ℝ*) |
323 | | peano2z 11630 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈
ℤ) |
324 | 323 | zred 11694 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈
ℝ) |
325 | 324 | adantl 473 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈
ℝ) |
326 | 320, 325 | remulcld 10282 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈
ℝ) |
327 | 326 | rexrd 10301 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈
ℝ*) |
328 | | zcn 11594 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℂ) |
329 | 328 | adantl 473 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℂ) |
330 | 310 | ad3antlr 769 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈
ℂ) |
331 | 329, 330 | mulcomd 10273 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) = ((𝑣 / 3) · ((𝑡 / (𝑣 / 3)) + 1))) |
332 | 49 | ad3antlr 769 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈
ℝ+) |
333 | 318 | ltp1d 11166 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) < (((𝑡 / (𝑣 / 3)) + 1) + 1)) |
334 | 333 | adantl 473 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) < (((𝑡 / (𝑣 / 3)) + 1) + 1)) |
335 | 319, 325,
332, 334 | ltmul2dd 12141 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · ((𝑡 / (𝑣 / 3)) + 1)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) |
336 | 331, 335 | eqbrtrd 4826 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) |
337 | | snunioo 12511 |
. . . . . . . . . . . . 13
⊢
(((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈
ℝ* ∧ ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ*
∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) → ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) |
338 | 322, 327,
336, 337 | syl3anc 1477 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) |
339 | 317, 338 | imaeq12d 5625 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (◡𝐹 “ ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = (◡(𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) |
340 | 316, 339 | syl5eqr 2808 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((◡𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (◡𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = (◡(𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) |
341 | 232 | mptpreima 5789 |
. . . . . . . . . . 11
⊢ (◡(𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹‘𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))} |
342 | 4 | ad3antrrr 768 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ 𝐹:ℝ⟶ℝ) |
343 | 342 | ffvelrnda 6523 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
344 | 343 | 3biant1d 1590 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹‘𝑥) ∧ (𝐹‘𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹‘𝑥) ∧ (𝐹‘𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) |
345 | 344 | adantr 472 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹‘𝑥) ∧ (𝐹‘𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹‘𝑥) ∧ (𝐹‘𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) |
346 | 318 | adantl 473 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ) |
347 | 343 | adantr 472 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹‘𝑥) ∈ ℝ) |
348 | 49 | ad4antlr 773 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈
ℝ+) |
349 | 346, 347,
348 | lemuldivd 12134 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹‘𝑥) ↔ ((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹‘𝑥) / (𝑣 / 3)))) |
350 | 324 | adantl 473 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈
ℝ) |
351 | 347, 350,
348 | ltdivmuld 12136 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝐹‘𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1) ↔ (𝐹‘𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) |
352 | 351 | bicomd 213 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹‘𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ↔ ((𝐹‘𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))) |
353 | 349, 352 | anbi12d 749 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹‘𝑥) ∧ (𝐹‘𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹‘𝑥) / (𝑣 / 3)) ∧ ((𝐹‘𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1)))) |
354 | 345, 353 | bitr3d 270 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝐹‘𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹‘𝑥) ∧ (𝐹‘𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹‘𝑥) / (𝑣 / 3)) ∧ ((𝐹‘𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1)))) |
355 | | elico2 12450 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ ∧
((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ*)
→ ((𝐹‘𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹‘𝑥) ∧ (𝐹‘𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) |
356 | 321, 327,
355 | syl2anc 696 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹‘𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹‘𝑥) ∧ (𝐹‘𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) |
357 | 356 | adantlr 753 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹‘𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹‘𝑥) ∧ (𝐹‘𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) |
358 | | eqcom 2767 |
. . . . . . . . . . . . . . 15
⊢ (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ↔ (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1)) |
359 | 21 | adantlr 753 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) / (𝑣 / 3)) ∈ ℝ) |
360 | | flbi 12831 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑥) / (𝑣 / 3)) ∈ ℝ ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) →
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹‘𝑥) / (𝑣 / 3)) ∧ ((𝐹‘𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1)))) |
361 | 359, 360 | sylan 489 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) →
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹‘𝑥) / (𝑣 / 3)) ∧ ((𝐹‘𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1)))) |
362 | 358, 361 | syl5bb 272 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹‘𝑥) / (𝑣 / 3)) ∧ ((𝐹‘𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1)))) |
363 | 354, 357,
362 | 3bitr4d 300 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹‘𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3))))) |
364 | 363 | an32s 881 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3))))) |
365 | 364 | rabbidva 3328 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ (𝐹‘𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))} = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))}) |
366 | 341, 365 | syl5eq 2806 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (◡(𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))}) |
367 | 340, 366 | eqtrd 2794 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((◡𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (◡𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))}) |
368 | 237 | ad4antr 771 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹 ∈ MblFn) |
369 | 4 | ad4antr 771 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹:ℝ⟶ℝ) |
370 | | mbfimasn 23620 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧
(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ) → (◡𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol) |
371 | 368, 369,
321, 370 | syl3anc 1477 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (◡𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol) |
372 | | mbfima 23618 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom
vol) |
373 | 237, 4, 372 | syl2anc 696 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom
vol) |
374 | 373 | ad4antr 771 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (◡𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom
vol) |
375 | | unmbl 23525 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol ∧ (◡𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol) →
((◡𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (◡𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) ∈ dom
vol) |
376 | 371, 374,
375 | syl2anc 696 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((◡𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (◡𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) ∈ dom
vol) |
377 | 367, 376 | eqeltrrd 2840 |
. . . . . . . 8
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))} ∈ dom vol) |
378 | | simpr 479 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))) → ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))) |
379 | 359 | flcld 12813 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℤ) |
380 | 379 | adantr 472 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))) → (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℤ) |
381 | 378, 380 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) |
382 | 381 | stoic1a 1846 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ¬
((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))) |
383 | 382 | an32s 881 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) ∧ 𝑥 ∈ ℝ) → ¬
((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))) |
384 | 383 | ralrimiva 3104 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) →
∀𝑥 ∈ ℝ
¬ ((𝑡 / (𝑣 / 3)) + 1) =
(⌊‘((𝐹‘𝑥) / (𝑣 / 3)))) |
385 | | rabeq0 4100 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))} = ∅ ↔ ∀𝑥 ∈ ℝ ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))) |
386 | 384, 385 | sylibr 224 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))} = ∅) |
387 | | 0mbl 23527 |
. . . . . . . . 9
⊢ ∅
∈ dom vol |
388 | 386, 387 | syl6eqel 2847 |
. . . . . . . 8
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹‘𝑥) / (𝑣 / 3)))} ∈ dom vol) |
389 | 377, 388 | pm2.61dan 867 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ {𝑥 ∈ ℝ
∣ ((𝑡 / (𝑣 / 3)) + 1) =
(⌊‘((𝐹‘𝑥) / (𝑣 / 3)))} ∈ dom vol) |
390 | 315, 389 | eqeltrrd 2840 |
. . . . . 6
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ {𝑥 ∈ ℝ
∣ 𝑡 =
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))} ∈ dom
vol) |
391 | | inmbl 23530 |
. . . . . 6
⊢ ((({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))} ∈ dom vol) →
(({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom
vol) |
392 | 295, 390,
391 | syl2anc 696 |
. . . . 5
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (({𝑥 ∈ ℝ
∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom
vol) |
393 | | rabiun 33713 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ ∪ 𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = ∪
𝑡 ∈ ran ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} |
394 | | rabeq 3332 |
. . . . . . . . . . . 12
⊢ (∪ 𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) = ℝ → {𝑥 ∈ ∪
𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = {𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)}) |
395 | 175, 394 | syl 17 |
. . . . . . . . . . 11
⊢ (ℎ ∈ dom ∫1
→ {𝑥 ∈ ∪ 𝑡 ∈ ran ℎ(◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = {𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)}) |
396 | 393, 395 | syl5eqr 2808 |
. . . . . . . . . 10
⊢ (ℎ ∈ dom ∫1
→ ∪ 𝑡 ∈ ran ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = {𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)}) |
397 | 396 | ad2antlr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ∪ 𝑡 ∈ ran ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = {𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)}) |
398 | 183 | notbid 307 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ∈ dom ∫1
∧ 𝑥 ∈ (◡ℎ “ {𝑡})) → (¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ↔ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡)) |
399 | 398 | rabbidva 3328 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ dom ∫1
→ {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}) |
400 | | inrab2 4043 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡})) = {𝑥 ∈ (ℝ ∩ (◡ℎ “ {𝑡})) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} |
401 | | rabeq 3332 |
. . . . . . . . . . . . . . . 16
⊢ ((ℝ
∩ (◡ℎ “ {𝑡})) = (◡ℎ “ {𝑡}) → {𝑥 ∈ (ℝ ∩ (◡ℎ “ {𝑡})) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}) |
402 | 191, 401 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ dom ∫1
→ {𝑥 ∈ (ℝ
∩ (◡ℎ “ {𝑡})) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}) |
403 | 400, 402 | syl5eq 2806 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ dom ∫1
→ ({𝑥 ∈ ℝ
∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡})) = {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}) |
404 | 399, 403 | eqtr4d 2797 |
. . . . . . . . . . . . 13
⊢ (ℎ ∈ dom ∫1
→ {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = ({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡}))) |
405 | 404 | ad3antlr 769 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} = ({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡}))) |
406 | | imaundi 5703 |
. . . . . . . . . . . . . . . . 17
⊢ (◡𝐹 “ ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪
(((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 /
3))(,)+∞))) = ((◡𝐹 “
{((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 / 3))}) ∪
(◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 /
3))(,)+∞))) |
407 | 13, 19 | jca 555 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑣 ∈ ℝ+
→ ((𝑣 / 3) ∈
ℝ ∧ (𝑣 / 3) ≠
0)) |
408 | | redivcl 10956 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑡 ∈ ℝ ∧ (𝑣 / 3) ∈ ℝ ∧
(𝑣 / 3) ≠ 0) →
(𝑡 / (𝑣 / 3)) ∈ ℝ) |
409 | 408 | 3expb 1114 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑡 ∈ ℝ ∧ ((𝑣 / 3) ∈ ℝ ∧
(𝑣 / 3) ≠ 0)) →
(𝑡 / (𝑣 / 3)) ∈ ℝ) |
410 | 407, 409 | sylan2 492 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ+)
→ (𝑡 / (𝑣 / 3)) ∈
ℝ) |
411 | 410 | ancoms 468 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑣 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑡 / (𝑣 / 3)) ∈
ℝ) |
412 | 411 | adantll 752 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (𝑡 / (𝑣 / 3)) ∈
ℝ) |
413 | 412, 210 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ ((𝑡 / (𝑣 / 3)) + 1) ∈
ℝ) |
414 | | peano2re 10421 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈
ℝ) |
415 | | reflcl 12811 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ →
(⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1)) ∈
ℝ) |
416 | 413, 414,
415 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (⌊‘(((𝑡
/ (𝑣 / 3)) + 1) + 1))
∈ ℝ) |
417 | 13 | ad2antlr 765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (𝑣 / 3) ∈
ℝ) |
418 | 416, 417 | remulcld 10282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ ((⌊‘(((𝑡
/ (𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) ∈
ℝ) |
419 | 418 | rexrd 10301 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ ((⌊‘(((𝑡
/ (𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) ∈
ℝ*) |
420 | | pnfxr 10304 |
. . . . . . . . . . . . . . . . . . . 20
⊢ +∞
∈ ℝ* |
421 | 420 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ +∞ ∈ ℝ*) |
422 | | ltpnf 12167 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ →
((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) <
+∞) |
423 | 418, 422 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ ((⌊‘(((𝑡
/ (𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) <
+∞) |
424 | | snunioo 12511 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈
ℝ* ∧ +∞ ∈ ℝ* ∧
((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) <
+∞) → ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪
(((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 /
3))(,)+∞)) = (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 /
3))[,)+∞)) |
425 | 419, 421,
423, 424 | syl3anc 1477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪
(((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 /
3))(,)+∞)) = (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 /
3))[,)+∞)) |
426 | 425 | imaeq2d 5624 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (◡𝐹 “ ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪
(((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 /
3))(,)+∞))) = (◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 /
3))[,)+∞))) |
427 | 406, 426 | syl5eqr 2808 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ ((◡𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = (◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 /
3))[,)+∞))) |
428 | 230 | imaeq1d 5623 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = (◡(𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 /
3))[,)+∞))) |
429 | 232 | mptpreima 5789 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡(𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹‘𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 /
3))[,)+∞)} |
430 | 428, 429 | syl6eq 2810 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹‘𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 /
3))[,)+∞)}) |
431 | 430 | ad3antrrr 768 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹‘𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 /
3))[,)+∞)}) |
432 | 413, 414 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈
ℝ) |
433 | 432 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈
ℝ) |
434 | | flflp1 12822 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ
∧ ((𝐹‘𝑥) / (𝑣 / 3)) ∈ ℝ) →
((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1)) ≤
((𝐹‘𝑥) / (𝑣 / 3)) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) + 1))) |
435 | 433, 359,
434 | syl2anc 696 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1)) ≤
((𝐹‘𝑥) / (𝑣 / 3)) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) + 1))) |
436 | 418 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) ∈
ℝ) |
437 | | elicopnf 12482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ →
((𝐹‘𝑥) ∈
(((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 /
3))[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧
((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) ≤
(𝐹‘𝑥)))) |
438 | 436, 437 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔
((𝐹‘𝑥) ∈ ℝ ∧
((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) ≤
(𝐹‘𝑥)))) |
439 | 343 | biantrurd 530 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) ≤
(𝐹‘𝑥) ↔ ((𝐹‘𝑥) ∈ ℝ ∧
((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) ≤
(𝐹‘𝑥)))) |
440 | 416 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1)) ∈
ℝ) |
441 | 49 | ad3antlr 769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈
ℝ+) |
442 | 440, 343,
441 | lemuldivd 12134 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) ≤
(𝐹‘𝑥) ↔ (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹‘𝑥) / (𝑣 / 3)))) |
443 | 438, 439,
442 | 3bitr2d 296 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔
(⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1)) ≤
((𝐹‘𝑥) / (𝑣 / 3)))) |
444 | 413 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ) |
445 | 359, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ∈ ℝ) |
446 | | 1red 10267 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 1 ∈
ℝ) |
447 | 444, 445,
446 | ltadd1d 10832 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) + 1))) |
448 | 435, 443,
447 | 3bitr4d 300 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔
((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹‘𝑥) / (𝑣 / 3))))) |
449 | 302, 446,
445 | ltaddsubd 10839 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹‘𝑥) / (𝑣 / 3))) ↔ (𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1))) |
450 | 448, 449 | bitrd 268 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ (𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1))) |
451 | 445, 24 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ∈
ℝ) |
452 | 299, 451,
441 | ltdivmul2d 12137 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) ↔ 𝑡 < (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))) |
453 | 451, 300 | remulcld 10282 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈
ℝ) |
454 | 299, 453 | ltnled 10396 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 < (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ↔ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡)) |
455 | 450, 452,
454 | 3bitrd 294 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ ℎ ∈ dom ∫1)
∧ 𝑣 ∈
ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡)) |
456 | 455 | rabbidva 3328 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ {𝑥 ∈ ℝ
∣ (𝐹‘𝑥) ∈
(((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 /
3))[,)+∞)} = {𝑥
∈ ℝ ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}) |
457 | 427, 431,
456 | 3eqtrd 2798 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ ((◡𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = {𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}) |
458 | 237 | ad3antrrr 768 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ 𝐹 ∈
MblFn) |
459 | | mbfimasn 23620 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧
((⌊‘(((𝑡 /
(𝑣 / 3)) + 1) + 1))
· (𝑣 / 3)) ∈
ℝ) → (◡𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom
vol) |
460 | 458, 342,
418, 459 | syl3anc 1477 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (◡𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom
vol) |
461 | | mbfima 23618 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom
vol) |
462 | 237, 4, 461 | syl2anc 696 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom
vol) |
463 | 462 | ad3antrrr 768 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom
vol) |
464 | | unmbl 23525 |
. . . . . . . . . . . . . . . 16
⊢ (((◡𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol ∧
(◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom
vol) → ((◡𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) ∈ dom
vol) |
465 | 460, 463,
464 | syl2anc 696 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ ((◡𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (◡𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) ∈ dom
vol) |
466 | 457, 465 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ {𝑥 ∈ ℝ
∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol) |
467 | 244, 466 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → {𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol) |
468 | | inmbl 23530 |
. . . . . . . . . . . . 13
⊢ (({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol ∧ (◡ℎ “ {𝑡}) ∈ dom vol) → ({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡})) ∈ dom vol) |
469 | 467, 251,
468 | syl2anc 696 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → ({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ (◡ℎ “ {𝑡})) ∈ dom vol) |
470 | 405, 469 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ran ℎ) → {𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) |
471 | 470 | ralrimiva 3104 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ∀𝑡 ∈ ran
ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) |
472 | | finiunmbl 23532 |
. . . . . . . . . 10
⊢ ((ran
ℎ ∈ Fin ∧
∀𝑡 ∈ ran ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) → ∪ 𝑡 ∈ ran ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) |
473 | 42, 471, 472 | syl2anc 696 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ∪ 𝑡 ∈ ran ℎ{𝑥 ∈ (◡ℎ “ {𝑡}) ∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) |
474 | 397, 473 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ {𝑥 ∈ ℝ
∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol) |
475 | 261 | imaeq1d 5623 |
. . . . . . . . . . 11
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ {0}) = (◡(𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) “ {0})) |
476 | 263 | mptpreima 5789 |
. . . . . . . . . . . 12
⊢ (◡(𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) “ {0}) = {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ {0}} |
477 | 145 | elsn 4336 |
. . . . . . . . . . . . 13
⊢ ((ℎ‘𝑥) ∈ {0} ↔ (ℎ‘𝑥) = 0) |
478 | 477 | rabbii 3325 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ {0}} = {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0} |
479 | 476, 478 | eqtri 2782 |
. . . . . . . . . . 11
⊢ (◡(𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) “ {0}) = {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0} |
480 | 475, 479 | syl6eq 2810 |
. . . . . . . . . 10
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ {0}) = {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) |
481 | | i1fima 23664 |
. . . . . . . . . 10
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ {0}) ∈ dom vol) |
482 | 480, 481 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (ℎ ∈ dom ∫1
→ {𝑥 ∈ ℝ
∣ (ℎ‘𝑥) = 0} ∈ dom
vol) |
483 | 482 | ad2antlr 765 |
. . . . . . . 8
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ {𝑥 ∈ ℝ
∣ (ℎ‘𝑥) = 0} ∈ dom
vol) |
484 | | unmbl 23525 |
. . . . . . . 8
⊢ (({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0} ∈ dom vol) → ({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∈ dom vol) |
485 | 474, 483,
484 | syl2anc 696 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ({𝑥 ∈ ℝ
∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∈ dom vol) |
486 | 485 | adantr 472 |
. . . . . 6
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ ({𝑥 ∈ ℝ
∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∈ dom vol) |
487 | 261 | imaeq1d 5623 |
. . . . . . . . 9
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ {𝑡}) = (◡(𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) “ {𝑡})) |
488 | 263 | mptpreima 5789 |
. . . . . . . . . 10
⊢ (◡(𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) “ {𝑡}) = {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ {𝑡}} |
489 | 145 | elsn 4336 |
. . . . . . . . . . . 12
⊢ ((ℎ‘𝑥) ∈ {𝑡} ↔ (ℎ‘𝑥) = 𝑡) |
490 | | eqcom 2767 |
. . . . . . . . . . . 12
⊢ ((ℎ‘𝑥) = 𝑡 ↔ 𝑡 = (ℎ‘𝑥)) |
491 | 489, 490 | bitri 264 |
. . . . . . . . . . 11
⊢ ((ℎ‘𝑥) ∈ {𝑡} ↔ 𝑡 = (ℎ‘𝑥)) |
492 | 491 | rabbii 3325 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ {𝑡}} = {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)} |
493 | 488, 492 | eqtri 2782 |
. . . . . . . . 9
⊢ (◡(𝑥 ∈ ℝ ↦ (ℎ‘𝑥)) “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)} |
494 | 487, 493 | syl6eq 2810 |
. . . . . . . 8
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)}) |
495 | 494 | ad3antlr 769 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (◡ℎ “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)}) |
496 | 495, 250 | eqeltrrd 2840 |
. . . . . 6
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ {𝑥 ∈ ℝ
∣ 𝑡 = (ℎ‘𝑥)} ∈ dom vol) |
497 | | inmbl 23530 |
. . . . . 6
⊢ ((({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)} ∈ dom vol) → (({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)}) ∈ dom vol) |
498 | 486, 496,
497 | syl2anc 696 |
. . . . 5
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ (({𝑥 ∈ ℝ
∣ ¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)}) ∈ dom vol) |
499 | | unmbl 23525 |
. . . . 5
⊢
(((({𝑥 ∈
ℝ ∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol ∧
(({𝑥 ∈ ℝ ∣
¬ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)}) ∈ dom vol) → ((({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)})) ∈ dom vol) |
500 | 392, 498,
499 | syl2anc 696 |
. . . 4
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ ℝ)
→ ((({𝑥 ∈ ℝ
∣ (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)})) ∈ dom vol) |
501 | 165, 500 | syl 17 |
. . 3
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∖ {0})) → ((({𝑥 ∈ ℝ ∣
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬
(((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥)} ∪ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (ℎ‘𝑥)})) ∈ dom vol) |
502 | 159, 501 | syl5eqel 2843 |
. 2
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∖ {0})) → (◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ∈ dom vol) |
503 | | mblvol 23518 |
. . . 4
⊢ ((◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ∈ dom vol → (vol‘(◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡})) = (vol*‘(◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}))) |
504 | 502, 503 | syl 17 |
. . 3
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∖ {0})) → (vol‘(◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡})) = (vol*‘(◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}))) |
505 | | eldifsn 4462 |
. . . . . 6
⊢ (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∖ {0}) ↔ (𝑡 ∈ ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∧ 𝑡 ≠ 0)) |
506 | 163 | anim1d 589 |
. . . . . 6
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ ((𝑡 ∈ ran
(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∧ 𝑡 ≠ 0) → (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0))) |
507 | 505, 506 | syl5bi 232 |
. . . . 5
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ (𝑡 ∈ (ran
(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∖ {0}) → (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0))) |
508 | 507 | imdistani 728 |
. . . 4
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∖ {0})) → (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ (𝑡 ∈ ℝ
∧ 𝑡 ≠
0))) |
509 | 133 | a1i 11 |
. . . . . . . . . . 11
⊢ (ℎ ∈ dom ∫1
→ (◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) = {𝑥 ∈ ℝ ∣
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡}}) |
510 | 475, 476 | syl6eq 2810 |
. . . . . . . . . . 11
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ {0}) = {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ {0}}) |
511 | 509, 510 | ineq12d 3958 |
. . . . . . . . . 10
⊢ (ℎ ∈ dom ∫1
→ ((◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ∩ (◡ℎ “ {0})) = ({𝑥 ∈ ℝ ∣
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡}} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ {0}})) |
512 | | inrab 4042 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ ℝ ∣
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡}} ∩ {𝑥 ∈ ℝ ∣ (ℎ‘𝑥) ∈ {0}}) = {𝑥 ∈ ℝ ∣
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0})} |
513 | 511, 512 | syl6eq 2810 |
. . . . . . . . 9
⊢ (ℎ ∈ dom ∫1
→ ((◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ∩ (◡ℎ “ {0})) = {𝑥 ∈ ℝ ∣
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0})}) |
514 | 513 | ad3antlr 769 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ (𝑡 ∈ ℝ
∧ 𝑡 ≠ 0)) →
((◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ∩ (◡ℎ “ {0})) = {𝑥 ∈ ℝ ∣
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0})}) |
515 | 149 | biimpri 218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ℎ‘𝑥) = 0 → ¬ (ℎ‘𝑥) ≠ 0) |
516 | 515 | intnand 1000 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℎ‘𝑥) = 0 → ¬ ((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0)) |
517 | 516 | iffalsed 4241 |
. . . . . . . . . . . . . . . 16
⊢ ((ℎ‘𝑥) = 0 → if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) = (ℎ‘𝑥)) |
518 | | eqtr 2779 |
. . . . . . . . . . . . . . . 16
⊢
((if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) = (ℎ‘𝑥) ∧ (ℎ‘𝑥) = 0) → if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) = 0) |
519 | 517, 518 | mpancom 706 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ‘𝑥) = 0 → if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) = 0) |
520 | 519 | adantl 473 |
. . . . . . . . . . . . . 14
⊢ (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (ℎ‘𝑥) = 0) → if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) = 0) |
521 | | simpll 807 |
. . . . . . . . . . . . . . 15
⊢ (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (ℎ‘𝑥) = 0) → 𝑡 ≠ 0) |
522 | 521 | necomd 2987 |
. . . . . . . . . . . . . 14
⊢ (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (ℎ‘𝑥) = 0) → 0 ≠ 𝑡) |
523 | 520, 522 | eqnetrd 2999 |
. . . . . . . . . . . . 13
⊢ (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (ℎ‘𝑥) = 0) → if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ≠ 𝑡) |
524 | 523 | ex 449 |
. . . . . . . . . . . 12
⊢ ((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) → ((ℎ‘𝑥) = 0 → if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ≠ 𝑡)) |
525 | | orcom 401 |
. . . . . . . . . . . . . 14
⊢ ((¬
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∨ ¬ (ℎ‘𝑥) ∈ {0}) ↔ (¬ (ℎ‘𝑥) ∈ {0} ∨ ¬
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡})) |
526 | | ianor 510 |
. . . . . . . . . . . . . 14
⊢ (¬
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0}) ↔ (¬
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∨ ¬ (ℎ‘𝑥) ∈ {0})) |
527 | | imor 427 |
. . . . . . . . . . . . . 14
⊢ (((ℎ‘𝑥) ∈ {0} → ¬
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡}) ↔ (¬ (ℎ‘𝑥) ∈ {0} ∨ ¬
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡})) |
528 | 525, 526,
527 | 3bitr4i 292 |
. . . . . . . . . . . . 13
⊢ (¬
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0}) ↔ ((ℎ‘𝑥) ∈ {0} → ¬
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡})) |
529 | 147 | necon3bbii 2979 |
. . . . . . . . . . . . . 14
⊢ (¬
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ↔ if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ≠ 𝑡) |
530 | 477, 529 | imbi12i 339 |
. . . . . . . . . . . . 13
⊢ (((ℎ‘𝑥) ∈ {0} → ¬
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡}) ↔ ((ℎ‘𝑥) = 0 → if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ≠ 𝑡)) |
531 | 528, 530 | bitri 264 |
. . . . . . . . . . . 12
⊢ (¬
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0}) ↔ ((ℎ‘𝑥) = 0 → if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ≠ 𝑡)) |
532 | 524, 531 | sylibr 224 |
. . . . . . . . . . 11
⊢ ((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) → ¬
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0})) |
533 | 532 | ralrimiva 3104 |
. . . . . . . . . 10
⊢ (𝑡 ≠ 0 → ∀𝑥 ∈ ℝ ¬
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0})) |
534 | | rabeq0 4100 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ ℝ ∣
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0})} = ∅ ↔ ∀𝑥 ∈ ℝ ¬
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0})) |
535 | 533, 534 | sylibr 224 |
. . . . . . . . 9
⊢ (𝑡 ≠ 0 → {𝑥 ∈ ℝ ∣
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0})} = ∅) |
536 | 535 | ad2antll 767 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ (𝑡 ∈ ℝ
∧ 𝑡 ≠ 0)) →
{𝑥 ∈ ℝ ∣
(if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥)) ∈ {𝑡} ∧ (ℎ‘𝑥) ∈ {0})} = ∅) |
537 | 514, 536 | eqtrd 2794 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ (𝑡 ∈ ℝ
∧ 𝑡 ≠ 0)) →
((◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ∩ (◡ℎ “ {0})) = ∅) |
538 | | imassrn 5635 |
. . . . . . . . 9
⊢ (◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ⊆ ran ◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) |
539 | | dfdm4 5471 |
. . . . . . . . . 10
⊢ dom
(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) = ran ◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) |
540 | 146, 31 | dmmpti 6184 |
. . . . . . . . . 10
⊢ dom
(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) = ℝ |
541 | 539, 540 | eqtr3i 2784 |
. . . . . . . . 9
⊢ ran ◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) = ℝ |
542 | 538, 541 | sseqtri 3778 |
. . . . . . . 8
⊢ (◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ⊆ ℝ |
543 | | reldisj 4163 |
. . . . . . . 8
⊢ ((◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ⊆ ℝ → (((◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ∩ (◡ℎ “ {0})) = ∅ ↔ (◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ⊆ (ℝ ∖ (◡ℎ “ {0})))) |
544 | 542, 543 | ax-mp 5 |
. . . . . . 7
⊢ (((◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ∩ (◡ℎ “ {0})) = ∅ ↔ (◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ⊆ (ℝ ∖ (◡ℎ “ {0}))) |
545 | 537, 544 | sylib 208 |
. . . . . 6
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ (𝑡 ∈ ℝ
∧ 𝑡 ≠ 0)) →
(◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ⊆ (ℝ ∖ (◡ℎ “ {0}))) |
546 | | ffun 6209 |
. . . . . . . . . 10
⊢ (ℎ:ℝ⟶ℝ →
Fun ℎ) |
547 | | difpreima 6507 |
. . . . . . . . . 10
⊢ (Fun
ℎ → (◡ℎ “ (ran ℎ ∖ {0})) = ((◡ℎ “ ran ℎ) ∖ (◡ℎ “ {0}))) |
548 | 546, 547 | syl 17 |
. . . . . . . . 9
⊢ (ℎ:ℝ⟶ℝ →
(◡ℎ “ (ran ℎ ∖ {0})) = ((◡ℎ “ ran ℎ) ∖ (◡ℎ “ {0}))) |
549 | 167, 173 | syl5eq 2806 |
. . . . . . . . . 10
⊢ (ℎ:ℝ⟶ℝ →
(◡ℎ “ ran ℎ) = ℝ) |
550 | 549 | difeq1d 3870 |
. . . . . . . . 9
⊢ (ℎ:ℝ⟶ℝ →
((◡ℎ “ ran ℎ) ∖ (◡ℎ “ {0})) = (ℝ ∖ (◡ℎ “ {0}))) |
551 | 548, 550 | eqtrd 2794 |
. . . . . . . 8
⊢ (ℎ:ℝ⟶ℝ →
(◡ℎ “ (ran ℎ ∖ {0})) = (ℝ ∖ (◡ℎ “ {0}))) |
552 | 27, 551 | syl 17 |
. . . . . . 7
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ (ran ℎ ∖ {0})) = (ℝ ∖ (◡ℎ “ {0}))) |
553 | 552 | ad3antlr 769 |
. . . . . 6
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ (𝑡 ∈ ℝ
∧ 𝑡 ≠ 0)) →
(◡ℎ “ (ran ℎ ∖ {0})) = (ℝ ∖ (◡ℎ “ {0}))) |
554 | 545, 553 | sseqtr4d 3783 |
. . . . 5
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ (𝑡 ∈ ℝ
∧ 𝑡 ≠ 0)) →
(◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ⊆ (◡ℎ “ (ran ℎ ∖ {0}))) |
555 | | imassrn 5635 |
. . . . . . 7
⊢ (◡ℎ “ (ran ℎ ∖ {0})) ⊆ ran ◡ℎ |
556 | 555, 188 | syl5sseq 3794 |
. . . . . 6
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ (ran ℎ ∖ {0})) ⊆
ℝ) |
557 | 556 | ad3antlr 769 |
. . . . 5
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ (𝑡 ∈ ℝ
∧ 𝑡 ≠ 0)) →
(◡ℎ “ (ran ℎ ∖ {0})) ⊆
ℝ) |
558 | | i1fima 23664 |
. . . . . . . 8
⊢ (ℎ ∈ dom ∫1
→ (◡ℎ “ (ran ℎ ∖ {0})) ∈ dom
vol) |
559 | | mblvol 23518 |
. . . . . . . 8
⊢ ((◡ℎ “ (ran ℎ ∖ {0})) ∈ dom vol →
(vol‘(◡ℎ “ (ran ℎ ∖ {0}))) = (vol*‘(◡ℎ “ (ran ℎ ∖ {0})))) |
560 | 558, 559 | syl 17 |
. . . . . . 7
⊢ (ℎ ∈ dom ∫1
→ (vol‘(◡ℎ “ (ran ℎ ∖ {0}))) = (vol*‘(◡ℎ “ (ran ℎ ∖ {0})))) |
561 | | neldifsn 4467 |
. . . . . . . 8
⊢ ¬ 0
∈ (ran ℎ ∖
{0}) |
562 | | i1fima2 23665 |
. . . . . . . 8
⊢ ((ℎ ∈ dom ∫1
∧ ¬ 0 ∈ (ran ℎ
∖ {0})) → (vol‘(◡ℎ “ (ran ℎ ∖ {0}))) ∈
ℝ) |
563 | 561, 562 | mpan2 709 |
. . . . . . 7
⊢ (ℎ ∈ dom ∫1
→ (vol‘(◡ℎ “ (ran ℎ ∖ {0}))) ∈
ℝ) |
564 | 560, 563 | eqeltrrd 2840 |
. . . . . 6
⊢ (ℎ ∈ dom ∫1
→ (vol*‘(◡ℎ “ (ran ℎ ∖ {0}))) ∈
ℝ) |
565 | 564 | ad3antlr 769 |
. . . . 5
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ (𝑡 ∈ ℝ
∧ 𝑡 ≠ 0)) →
(vol*‘(◡ℎ “ (ran ℎ ∖ {0}))) ∈
ℝ) |
566 | | ovolsscl 23474 |
. . . . 5
⊢ (((◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡}) ⊆ (◡ℎ “ (ran ℎ ∖ {0})) ∧ (◡ℎ “ (ran ℎ ∖ {0})) ⊆ ℝ ∧
(vol*‘(◡ℎ “ (ran ℎ ∖ {0}))) ∈ ℝ) →
(vol*‘(◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡})) ∈ ℝ) |
567 | 554, 557,
565, 566 | syl3anc 1477 |
. . . 4
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ (𝑡 ∈ ℝ
∧ 𝑡 ≠ 0)) →
(vol*‘(◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡})) ∈ ℝ) |
568 | 508, 567 | syl 17 |
. . 3
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∖ {0})) → (vol*‘(◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡})) ∈ ℝ) |
569 | 504, 568 | eqeltrd 2839 |
. 2
⊢ ((((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∖ {0})) → (vol‘(◡(𝑥 ∈ ℝ ↦
if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) “ {𝑡})) ∈ ℝ) |
570 | 32, 132, 502, 569 | i1fd 23667 |
1
⊢ (((𝜑 ∧ ℎ ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+)
→ (𝑥 ∈ ℝ
↦ if(((((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (ℎ‘𝑥) ∧ (ℎ‘𝑥) ≠ 0), (((⌊‘((𝐹‘𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (ℎ‘𝑥))) ∈ dom
∫1) |