MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cn Structured version   Visualization version   GIF version

Theorem itg2cn 24363
Description: A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 24633 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2cn.4 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
itg2cn (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐶   𝐹,𝑑,𝑢,𝑥   𝜑,𝑢,𝑥
Allowed substitution hint:   𝜑(𝑑)

Proof of Theorem itg2cn
Dummy variables 𝑚 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2cn.3 . . . . . 6 (𝜑 → (∫2𝐹) ∈ ℝ)
2 itg2cn.4 . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
32rphalfcld 12442 . . . . . 6 (𝜑 → (𝐶 / 2) ∈ ℝ+)
41, 3ltsubrpd 12462 . . . . 5 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) < (∫2𝐹))
53rpred 12430 . . . . . . 7 (𝜑 → (𝐶 / 2) ∈ ℝ)
61, 5resubcld 11067 . . . . . 6 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ)
76, 1ltnled 10786 . . . . 5 (𝜑 → (((∫2𝐹) − (𝐶 / 2)) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2))))
84, 7mpbid 234 . . . 4 (𝜑 → ¬ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2)))
9 itg2cn.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:ℝ⟶(0[,)+∞))
109ffvelrnda 6850 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
11 elrege0 12841 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1210, 11sylib 220 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1312simpld 497 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1413rexrd 10690 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
1512simprd 498 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
16 elxrge0 12844 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
1714, 15, 16sylanbrc 585 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
18 0e0iccpnf 12846 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
19 ifcl 4510 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2017, 18, 19sylancl 588 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2120adantlr 713 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2221fmpttd 6878 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
23 itg2cl 24332 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) ∈ ℝ*)
2422, 23syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) ∈ ℝ*)
2524fmpttd 6878 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))):ℕ⟶ℝ*)
2625frnd 6520 . . . . . 6 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) ⊆ ℝ*)
276rexrd 10690 . . . . . 6 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ*)
28 supxrleub 12718 . . . . . 6 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) ⊆ ℝ* ∧ ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2))))
2926, 27, 28syl2anc 586 . . . . 5 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2))))
30 itg2cn.2 . . . . . . 7 (𝜑𝐹 ∈ MblFn)
319, 30, 1itg2cnlem1 24361 . . . . . 6 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
3231breq1d 5075 . . . . 5 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2))))
3325ffnd 6514 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ)
34 breq1 5068 . . . . . . . 8 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) → (𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2))))
3534ralrn 6853 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2))))
36 breq2 5069 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ 𝑚))
3736ifbid 4488 . . . . . . . . . . . 12 (𝑛 = 𝑚 → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
3837mpteq2dv 5161 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
3938fveq2d 6673 . . . . . . . . . 10 (𝑛 = 𝑚 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
40 eqid 2821 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))
41 fvex 6682 . . . . . . . . . 10 (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ∈ V
4239, 40, 41fvmpt 6767 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
4342breq1d 5075 . . . . . . . 8 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4443ralbiia 3164 . . . . . . 7 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
4535, 44syl6bb 289 . . . . . 6 ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4633, 45syl 17 . . . . 5 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4729, 32, 463bitr3d 311 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
488, 47mtbid 326 . . 3 (𝜑 → ¬ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
49 rexnal 3238 . . 3 (∃𝑚 ∈ ℕ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ¬ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
5048, 49sylibr 236 . 2 (𝜑 → ∃𝑚 ∈ ℕ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
519adantr 483 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐹:ℝ⟶(0[,)+∞))
5230adantr 483 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐹 ∈ MblFn)
531adantr 483 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → (∫2𝐹) ∈ ℝ)
542adantr 483 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐶 ∈ ℝ+)
55 simprl 769 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝑚 ∈ ℕ)
56 simprr 771 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
57 fveq2 6669 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5857breq1d 5075 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
5958, 57ifbieq1d 4489 . . . . . . . 8 (𝑥 = 𝑦 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
6059cbvmptv 5168 . . . . . . 7 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
6160fveq2i 6672 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0)))
6261breq1i 5072 . . . . 5 ((∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
6356, 62sylnib 330 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ¬ (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
6451, 52, 53, 54, 55, 63itg2cnlem2 24362 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
65 elequ1 2117 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑢𝑦𝑢))
6665, 57ifbieq1d 4489 . . . . . . . . 9 (𝑥 = 𝑦 → if(𝑥𝑢, (𝐹𝑥), 0) = if(𝑦𝑢, (𝐹𝑦), 0))
6766cbvmptv 5168 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))
6867fveq2i 6672 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0)))
6968breq1i 5072 . . . . . 6 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶)
7069imbi2i 338 . . . . 5 (((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7170ralbii 3165 . . . 4 (∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7271rexbii 3247 . . 3 (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7364, 72sylibr 236 . 2 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
7450, 73rexlimddv 3291 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2110  wral 3138  wrex 3139  wss 3935  ifcif 4466   class class class wbr 5065  cmpt 5145  dom cdm 5554  ran crn 5555   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  supcsup 8903  cr 10535  0cc0 10536  +∞cpnf 10671  *cxr 10673   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  +crp 12388  [,)cico 12739  [,]cicc 12740  volcvol 24063  MblFncmbf 24214  2citg2 24216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-ofr 7409  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-rest 16695  df-topgen 16716  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-top 21501  df-topon 21518  df-bases 21553  df-cmp 21994  df-ovol 24064  df-vol 24065  df-mbf 24219  df-itg1 24220  df-itg2 24221  df-0p 24270
This theorem is referenced by:  itgcn  24442
  Copyright terms: Public domain W3C validator