MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const Structured version   Visualization version   GIF version

Theorem itg2const 24343
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
itg2const ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itg2const
StepHypRef Expression
1 reex 10630 . . . . . . 7 ℝ ∈ V
21a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ℝ ∈ V)
3 simpl3 1189 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ (0[,)+∞))
4 1re 10643 . . . . . . . 8 1 ∈ ℝ
5 0re 10645 . . . . . . . 8 0 ∈ ℝ
64, 5ifcli 4515 . . . . . . 7 if(𝑥𝐴, 1, 0) ∈ ℝ
76a1i 11 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ ℝ)
8 fconstmpt 5616 . . . . . . 7 (ℝ × {𝐵}) = (𝑥 ∈ ℝ ↦ 𝐵)
98a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (ℝ × {𝐵}) = (𝑥 ∈ ℝ ↦ 𝐵))
10 eqidd 2824 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))
112, 3, 7, 9, 10offval2 7428 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ (𝐵 · if(𝑥𝐴, 1, 0))))
12 ovif2 7254 . . . . . . 7 (𝐵 · if(𝑥𝐴, 1, 0)) = if(𝑥𝐴, (𝐵 · 1), (𝐵 · 0))
13 simp3 1134 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ (0[,)+∞))
14 elrege0 12845 . . . . . . . . . . . 12 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1513, 14sylib 220 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1615simpld 497 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ ℝ)
1716recnd 10671 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ)
1817mulid1d 10660 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · 1) = 𝐵)
1917mul01d 10841 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · 0) = 0)
2018, 19ifeq12d 4489 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → if(𝑥𝐴, (𝐵 · 1), (𝐵 · 0)) = if(𝑥𝐴, 𝐵, 0))
2112, 20syl5eq 2870 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · if(𝑥𝐴, 1, 0)) = if(𝑥𝐴, 𝐵, 0))
2221mpteq2dv 5164 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ (𝐵 · if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
2311, 22eqtrd 2858 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
24 eqid 2823 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
2524i1f1 24293 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) ∈ dom ∫1)
26253adant3 1128 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) ∈ dom ∫1)
2726, 16i1fmulc 24306 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) ∈ dom ∫1)
2823, 27eqeltrrd 2916 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ dom ∫1)
2915simprd 498 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
30 0le0 11741 . . . . . 6 0 ≤ 0
31 breq2 5072 . . . . . . 7 (𝐵 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
32 breq2 5072 . . . . . . 7 (0 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
3331, 32ifboth 4507 . . . . . 6 ((0 ≤ 𝐵 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
3429, 30, 33sylancl 588 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
3534ralrimivw 3185 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0))
36 ax-resscn 10596 . . . . . . 7 ℝ ⊆ ℂ
3736a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ℝ ⊆ ℂ)
3816adantr 483 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
39 ifcl 4513 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
4038, 5, 39sylancl 588 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
4140ralrimiva 3184 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ∀𝑥 ∈ ℝ if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
42 eqid 2823 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))
4342fnmpt 6490 . . . . . . 7 (∀𝑥 ∈ ℝ if(𝑥𝐴, 𝐵, 0) ∈ ℝ → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) Fn ℝ)
4441, 43syl 17 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) Fn ℝ)
4537, 440pledm 24276 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
465a1i 11 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
47 fconstmpt 5616 . . . . . . 7 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
4847a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0))
49 eqidd 2824 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
502, 46, 40, 48, 49ofrfval2 7429 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
5145, 50bitrd 281 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
5235, 51mpbird 259 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
53 itg2itg1 24339 . . 3 (((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5428, 52, 53syl2anc 586 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5526, 16itg1mulc 24307 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (𝐵 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))))
5623fveq2d 6676 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5724itg11 24294 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (vol‘𝐴))
58573adant3 1128 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (vol‘𝐴))
5958oveq2d 7174 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (𝐵 · (vol‘𝐴)))
6055, 56, 593eqtr3d 2866 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
6154, 60eqtrd 2858 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  wss 3938  ifcif 4469  {csn 4569   class class class wbr 5068  cmpt 5148   × cxp 5555  dom cdm 5557   Fn wfn 6352  cfv 6357  (class class class)co 7158  f cof 7409  r cofr 7410  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544  +∞cpnf 10674  cle 10678  [,)cico 12743  volcvol 24066  1citg1 24218  2citg2 24219  0𝑝c0p 24272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-xmet 20540  df-met 20541  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223  df-itg2 24224  df-0p 24273
This theorem is referenced by:  itg2const2  24344  itg2gt0  24363  itg2cnlem2  24365  iblconst  24420  itgconst  24421  itg2gt0cn  34949  bddiblnc  34964  ftc1anclem7  34975
  Copyright terms: Public domain W3C validator