MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const2 Structured version   Visualization version   GIF version

Theorem itg2const2 23705
Description: When the base set of a constant function has infinite volume, the integral is also infinite and vice-versa. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
itg2const2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itg2const2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll 807 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ∈ dom vol)
2 simpr 479 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
3 rpre 12030 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
43ad2antlr 765 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐵 ∈ ℝ)
5 rpge0 12036 . . . . . 6 (𝐵 ∈ ℝ+ → 0 ≤ 𝐵)
65ad2antlr 765 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 0 ≤ 𝐵)
7 elrege0 12469 . . . . 5 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
84, 6, 7sylanbrc 701 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐵 ∈ (0[,)+∞))
9 itg2const 23704 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
101, 2, 8, 9syl3anc 1477 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
114, 2remulcld 10260 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (𝐵 · (vol‘𝐴)) ∈ ℝ)
1210, 11eqeltrd 2837 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
13 mblvol 23496 . . . 4 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
1413ad2antrr 764 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) = (vol*‘𝐴))
15 mblss 23497 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1615ad3antrrr 768 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → 𝐴 ⊆ ℝ)
17 peano2re 10399 . . . . . . . 8 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
1817adantl 473 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
19 simplr 809 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℝ+)
2018, 19rerpdivcld 12094 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
2120adantr 472 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
22 simpr 479 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
23 ovollecl 23449 . . . . 5 ((𝐴 ⊆ ℝ ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ)
2416, 21, 22, 23syl3anc 1477 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ)
25 simplll 815 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 𝐴 ∈ dom vol)
2620adantr 472 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
2726rexrd 10279 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*)
28 simpr 479 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
293ad2antlr 765 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
3029rexrd 10279 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ*)
315ad2antlr 765 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐵)
32 elxrge0 12472 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3330, 31, 32sylanbrc 701 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ (0[,]+∞))
34 0e0iccpnf 12474 . . . . . . . . . . . . . . . . 17 0 ∈ (0[,]+∞)
35 ifcl 4272 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,]+∞))
3633, 34, 35sylancl 697 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,]+∞))
37 eqid 2758 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))
3836, 37fmptd 6546 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
3938adantr 472 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
40 itg2ge0 23699 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
4139, 40syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
4228, 41ge0p1rpd 12093 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ+)
4342, 19rpdivcld 12080 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ+)
4443rpge0d 12067 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
4544adantr 472 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
4614breq2d 4814 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴) ↔ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
4746biimpar 503 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))
48 0xr 10276 . . . . . . . . . 10 0 ∈ ℝ*
49 iccssxr 12447 . . . . . . . . . . . 12 (0[,]+∞) ⊆ ℝ*
50 volf 23495 . . . . . . . . . . . . 13 vol:dom vol⟶(0[,]+∞)
5150ffvelrni 6519 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
5249, 51sseldi 3740 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
5325, 52syl 17 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
54 elicc1 12410 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))))
5548, 53, 54sylancr 698 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))))
5627, 45, 47, 55mpbir3and 1428 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)))
57 volivth 23573 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴))) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
5825, 56, 57syl2anc 696 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
5958ex 449 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))))
60 simprl 811 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝑧 ∈ dom vol)
61 simprrr 824 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
6220adantr 472 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
6361, 62eqeltrd 2837 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) ∈ ℝ)
643ad2antlr 765 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℝ)
6564adantr 472 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ ℝ)
6619adantr 472 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ ℝ+)
6766rpge0d 12067 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 0 ≤ 𝐵)
6865, 67, 7sylanbrc 701 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ (0[,)+∞))
69 itg2const 23704 . . . . . . . . . . 11 ((𝑧 ∈ dom vol ∧ (vol‘𝑧) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧)))
7060, 63, 68, 69syl3anc 1477 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧)))
7161oveq2d 6827 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (vol‘𝑧)) = (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
7218recnd 10258 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℂ)
7364recnd 10258 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℂ)
74 rpne0 12039 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ≠ 0)
7574ad2antlr 765 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ≠ 0)
7672, 73, 75divcan2d 10993 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
7776adantr 472 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
7870, 71, 773eqtrd 2796 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
793adantl 473 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
8079rexrd 10279 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ*)
815adantl 473 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 0 ≤ 𝐵)
8280, 81, 32sylanbrc 701 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ (0[,]+∞))
83 ifcl 4272 . . . . . . . . . . . . . 14 ((𝐵 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8482, 34, 83sylancl 697 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8584adantr 472 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
86 eqid 2758 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))
8785, 86fmptd 6546 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞))
8887ad2antrr 764 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞))
8939adantr 472 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
90 simpl 474 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+))
91 simprl 811 . . . . . . . . . . 11 ((𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))) → 𝑧𝐴)
9279ad3antrrr 768 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝐵 ∈ ℝ)
9392leidd 10784 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝐵𝐵)
94 iftrue 4234 . . . . . . . . . . . . . . . 16 (𝑥𝑧 → if(𝑥𝑧, 𝐵, 0) = 𝐵)
9594adantl 473 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) = 𝐵)
96 simplr 809 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) → 𝑧𝐴)
9796sselda 3742 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝑥𝐴)
9897iftrued 4236 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝐴, 𝐵, 0) = 𝐵)
9993, 95, 983brtr4d 4834 . . . . . . . . . . . . . 14 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
100 iffalse 4237 . . . . . . . . . . . . . . . 16 𝑥𝑧 → if(𝑥𝑧, 𝐵, 0) = 0)
101100adantl 473 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) = 0)
102 0le0 11300 . . . . . . . . . . . . . . . . 17 0 ≤ 0
103 breq2 4806 . . . . . . . . . . . . . . . . . 18 (𝐵 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
104 breq2 4806 . . . . . . . . . . . . . . . . . 18 (0 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
105103, 104ifboth 4266 . . . . . . . . . . . . . . . . 17 ((0 ≤ 𝐵 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
10681, 102, 105sylancl 697 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
107106ad3antrrr 768 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
108101, 107eqbrtrd 4824 . . . . . . . . . . . . . 14 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
10999, 108pm2.61dan 867 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
110109ralrimiva 3102 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) → ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
111 reex 10217 . . . . . . . . . . . . . . 15 ℝ ∈ V
112111a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ℝ ∈ V)
113 eqidd 2759 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)))
114 eqidd 2759 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
115112, 85, 36, 113, 114ofrfval2 7078 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0)))
116115biimpar 503 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0)) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
117110, 116syldan 488 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
11890, 91, 117syl2an 495 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
119 itg2le 23703 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
12088, 89, 118, 119syl3anc 1477 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
12178, 120eqbrtrrd 4826 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
122 ltp1 11051 . . . . . . . . . 10 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
123122ad2antlr 765 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
124 simplr 809 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
12517ad2antlr 765 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
126124, 125ltnled 10374 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ↔ ¬ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
127123, 126mpbid 222 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ¬ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
128121, 127pm2.21dd 186 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol*‘𝐴) ∈ ℝ)
129128rexlimdvaa 3168 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ))
13059, 129syld 47 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → (vol*‘𝐴) ∈ ℝ))
131130imp 444 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol*‘𝐴) ∈ ℝ)
13252ad2antrr 764 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) ∈ ℝ*)
13314, 132eqeltrrd 2838 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ*)
13420rexrd 10279 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*)
135 xrletri 12175 . . . . 5 (((vol*‘𝐴) ∈ ℝ* ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*) → ((vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
136133, 134, 135syl2anc 696 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
13724, 131, 136mpjaodan 862 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ)
13814, 137eqeltrd 2837 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
13912, 138impbida 913 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1630  wcel 2137  wne 2930  wral 3048  wrex 3049  Vcvv 3338  wss 3713  ifcif 4228   class class class wbr 4802  cmpt 4879  dom cdm 5264  wf 6043  cfv 6047  (class class class)co 6811  𝑟 cofr 7059  cr 10125  0cc0 10126  1c1 10127   + caddc 10129   · cmul 10131  +∞cpnf 10261  *cxr 10263   < clt 10264  cle 10265   / cdiv 10874  +crp 12023  [,)cico 12368  [,]cicc 12369  vol*covol 23429  volcvol 23430  2citg2 23582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-inf2 8709  ax-cc 9447  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204  ax-addf 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-disj 4771  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-se 5224  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-isom 6056  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-of 7060  df-ofr 7061  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-2o 7728  df-oadd 7731  df-er 7909  df-map 8023  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-fi 8480  df-sup 8511  df-inf 8512  df-oi 8578  df-card 8953  df-cda 9180  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-n0 11483  df-z 11568  df-uz 11878  df-q 11980  df-rp 12024  df-xneg 12137  df-xadd 12138  df-xmul 12139  df-ioo 12370  df-ico 12372  df-icc 12373  df-fz 12518  df-fzo 12658  df-fl 12785  df-seq 12994  df-exp 13053  df-hash 13310  df-cj 14036  df-re 14037  df-im 14038  df-sqrt 14172  df-abs 14173  df-clim 14416  df-rlim 14417  df-sum 14614  df-rest 16283  df-topgen 16304  df-psmet 19938  df-xmet 19939  df-met 19940  df-bl 19941  df-mopn 19942  df-top 20899  df-topon 20916  df-bases 20950  df-cmp 21390  df-cncf 22880  df-ovol 23431  df-vol 23432  df-mbf 23585  df-itg1 23586  df-itg2 23587  df-0p 23634
This theorem is referenced by:  itg2gt0  23724
  Copyright terms: Public domain W3C validator