MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq2 Structured version   Visualization version   GIF version

Theorem itg2i1fseq2 23720
Description: In an extension to the results of itg2i1fseq 23719, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then 2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
itg2i1fseq2.7 (𝜑𝑀 ∈ ℝ)
itg2i1fseq2.8 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ 𝑀)
Assertion
Ref Expression
itg2i1fseq2 (𝜑𝑆 ⇝ (∫2𝐹))
Distinct variable groups:   𝑘,𝑚,𝑛,𝑥,𝐹   𝑘,𝑀,𝑛   𝑃,𝑘,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚)

Proof of Theorem itg2i1fseq2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11914 . . 3 ℕ = (ℤ‘1)
2 1zzd 11598 . . 3 (𝜑 → 1 ∈ ℤ)
3 itg2i1fseq.3 . . . . . 6 (𝜑𝑃:ℕ⟶dom ∫1)
43ffvelrnda 6520 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ dom ∫1)
5 itg1cl 23649 . . . . 5 ((𝑃𝑚) ∈ dom ∫1 → (∫1‘(𝑃𝑚)) ∈ ℝ)
64, 5syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → (∫1‘(𝑃𝑚)) ∈ ℝ)
7 itg2i1fseq.6 . . . 4 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
86, 7fmptd 6546 . . 3 (𝜑𝑆:ℕ⟶ℝ)
93ffvelrnda 6520 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∈ dom ∫1)
10 peano2nn 11222 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
11 ffvelrn 6518 . . . . . 6 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
123, 10, 11syl2an 495 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
13 itg2i1fseq.4 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
14 simpr 479 . . . . . . . 8 ((0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))) → (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))
1514ralimi 3088 . . . . . . 7 (∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))
1613, 15syl 17 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))
17 fveq2 6350 . . . . . . . 8 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
18 oveq1 6818 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
1918fveq2d 6354 . . . . . . . 8 (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1)))
2017, 19breq12d 4815 . . . . . . 7 (𝑛 = 𝑘 → ((𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1))))
2120rspccva 3446 . . . . . 6 ((∀𝑛 ∈ ℕ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1)))
2216, 21sylan 489 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1)))
23 itg1le 23677 . . . . 5 (((𝑃𝑘) ∈ dom ∫1 ∧ (𝑃‘(𝑘 + 1)) ∈ dom ∫1 ∧ (𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1))) → (∫1‘(𝑃𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1))))
249, 12, 22, 23syl3anc 1477 . . . 4 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1))))
25 fveq2 6350 . . . . . . 7 (𝑚 = 𝑘 → (𝑃𝑚) = (𝑃𝑘))
2625fveq2d 6354 . . . . . 6 (𝑚 = 𝑘 → (∫1‘(𝑃𝑚)) = (∫1‘(𝑃𝑘)))
27 fvex 6360 . . . . . 6 (∫1‘(𝑃𝑘)) ∈ V
2826, 7, 27fvmpt 6442 . . . . 5 (𝑘 ∈ ℕ → (𝑆𝑘) = (∫1‘(𝑃𝑘)))
2928adantl 473 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) = (∫1‘(𝑃𝑘)))
30 fveq2 6350 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝑃𝑚) = (𝑃‘(𝑘 + 1)))
3130fveq2d 6354 . . . . . . 7 (𝑚 = (𝑘 + 1) → (∫1‘(𝑃𝑚)) = (∫1‘(𝑃‘(𝑘 + 1))))
32 fvex 6360 . . . . . . 7 (∫1‘(𝑃‘(𝑘 + 1))) ∈ V
3331, 7, 32fvmpt 6442 . . . . . 6 ((𝑘 + 1) ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3410, 33syl 17 . . . . 5 (𝑘 ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3534adantl 473 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3624, 29, 353brtr4d 4834 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ (𝑆‘(𝑘 + 1)))
37 itg2i1fseq2.7 . . . 4 (𝜑𝑀 ∈ ℝ)
38 itg2i1fseq2.8 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ 𝑀)
3929, 38eqbrtrd 4824 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ 𝑀)
4039ralrimiva 3102 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑀)
41 breq2 4806 . . . . . 6 (𝑧 = 𝑀 → ((𝑆𝑘) ≤ 𝑧 ↔ (𝑆𝑘) ≤ 𝑀))
4241ralbidv 3122 . . . . 5 (𝑧 = 𝑀 → (∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑀))
4342rspcev 3447 . . . 4 ((𝑀 ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑀) → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧)
4437, 40, 43syl2anc 696 . . 3 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧)
451, 2, 8, 36, 44climsup 14597 . 2 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
46 itg2i1fseq.1 . . . 4 (𝜑𝐹 ∈ MblFn)
47 itg2i1fseq.2 . . . 4 (𝜑𝐹:ℝ⟶(0[,)+∞))
48 itg2i1fseq.5 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
4946, 47, 3, 13, 48, 7itg2i1fseq 23719 . . 3 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
50 frn 6212 . . . . 5 (𝑆:ℕ⟶ℝ → ran 𝑆 ⊆ ℝ)
518, 50syl 17 . . . 4 (𝜑 → ran 𝑆 ⊆ ℝ)
527, 6dmmptd 6183 . . . . . 6 (𝜑 → dom 𝑆 = ℕ)
53 1nn 11221 . . . . . . 7 1 ∈ ℕ
54 ne0i 4062 . . . . . . 7 (1 ∈ ℕ → ℕ ≠ ∅)
5553, 54mp1i 13 . . . . . 6 (𝜑 → ℕ ≠ ∅)
5652, 55eqnetrd 2997 . . . . 5 (𝜑 → dom 𝑆 ≠ ∅)
57 dm0rn0 5495 . . . . . 6 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
5857necon3bii 2982 . . . . 5 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
5956, 58sylib 208 . . . 4 (𝜑 → ran 𝑆 ≠ ∅)
60 ffn 6204 . . . . . . 7 (𝑆:ℕ⟶ℝ → 𝑆 Fn ℕ)
61 breq1 4805 . . . . . . . 8 (𝑦 = (𝑆𝑘) → (𝑦𝑧 ↔ (𝑆𝑘) ≤ 𝑧))
6261ralrn 6523 . . . . . . 7 (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
638, 60, 623syl 18 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
6463rexbidv 3188 . . . . 5 (𝜑 → (∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
6544, 64mpbird 247 . . . 4 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧)
66 supxrre 12348 . . . 4 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
6751, 59, 65, 66syl3anc 1477 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
6849, 67eqtrd 2792 . 2 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ, < ))
6945, 68breqtrrd 4830 1 (𝜑𝑆 ⇝ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1630  wcel 2137  wne 2930  wral 3048  wrex 3049  wss 3713  c0 4056   class class class wbr 4802  cmpt 4879  dom cdm 5264  ran crn 5265   Fn wfn 6042  wf 6043  cfv 6047  (class class class)co 6811  𝑟 cofr 7059  supcsup 8509  cr 10125  0cc0 10126  1c1 10127   + caddc 10129  +∞cpnf 10261  *cxr 10263   < clt 10264  cle 10265  cn 11210  [,)cico 12368  cli 14412  MblFncmbf 23580  1citg1 23581  2citg2 23582  0𝑝c0p 23633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-inf2 8709  ax-cc 9447  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204  ax-addf 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-disj 4771  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-se 5224  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-isom 6056  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-of 7060  df-ofr 7061  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-2o 7728  df-oadd 7731  df-omul 7732  df-er 7909  df-map 8023  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-fi 8480  df-sup 8511  df-inf 8512  df-oi 8578  df-card 8953  df-acn 8956  df-cda 9180  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-n0 11483  df-z 11568  df-uz 11878  df-q 11980  df-rp 12024  df-xneg 12137  df-xadd 12138  df-xmul 12139  df-ioo 12370  df-ioc 12371  df-ico 12372  df-icc 12373  df-fz 12518  df-fzo 12658  df-fl 12785  df-seq 12994  df-exp 13053  df-hash 13310  df-cj 14036  df-re 14037  df-im 14038  df-sqrt 14172  df-abs 14173  df-clim 14416  df-rlim 14417  df-sum 14614  df-rest 16283  df-topgen 16304  df-psmet 19938  df-xmet 19939  df-met 19940  df-bl 19941  df-mopn 19942  df-top 20899  df-topon 20916  df-bases 20950  df-cmp 21390  df-ovol 23431  df-vol 23432  df-mbf 23585  df-itg1 23586  df-itg2 23587  df-0p 23634
This theorem is referenced by:  itg2i1fseq3  23721  itg2addlem  23722
  Copyright terms: Public domain W3C validator