MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq3 Structured version   Visualization version   GIF version

Theorem itg2i1fseq3 23569
Description: Special case of itg2i1fseq2 23568: if the integral of 𝐹 is a real number, then the standard limit relation holds on the integrals of simple functions approaching 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
itg2i1fseq3.7 (𝜑 → (∫2𝐹) ∈ ℝ)
Assertion
Ref Expression
itg2i1fseq3 (𝜑𝑆 ⇝ (∫2𝐹))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐹   𝑃,𝑚,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)

Proof of Theorem itg2i1fseq3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg2i1fseq.1 . 2 (𝜑𝐹 ∈ MblFn)
2 itg2i1fseq.2 . 2 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 itg2i1fseq.3 . 2 (𝜑𝑃:ℕ⟶dom ∫1)
4 itg2i1fseq.4 . 2 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
5 itg2i1fseq.5 . 2 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
6 itg2i1fseq.6 . 2 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
7 itg2i1fseq3.7 . 2 (𝜑 → (∫2𝐹) ∈ ℝ)
8 icossicc 12298 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
9 fss 6094 . . . . 5 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
102, 8, 9sylancl 695 . . . 4 (𝜑𝐹:ℝ⟶(0[,]+∞))
1110adantr 480 . . 3 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℝ⟶(0[,]+∞))
123ffvelrnda 6399 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∈ dom ∫1)
131, 2, 3, 4, 5itg2i1fseqle 23566 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∘𝑟𝐹)
14 itg2ub 23545 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑃𝑘) ∈ dom ∫1 ∧ (𝑃𝑘) ∘𝑟𝐹) → (∫1‘(𝑃𝑘)) ≤ (∫2𝐹))
1511, 12, 13, 14syl3anc 1366 . 2 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ (∫2𝐹))
161, 2, 3, 4, 5, 6, 7, 15itg2i1fseq2 23568 1 (𝜑𝑆 ⇝ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  wss 3607   class class class wbr 4685  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  𝑟 cofr 6938  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  cle 10113  cn 11058  [,)cico 12215  [,]cicc 12216  cli 14259  MblFncmbf 23428  1citg1 23429  2citg2 23430  0𝑝c0p 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-itg2 23435  df-0p 23482
This theorem is referenced by:  itg2addlem  23570
  Copyright terms: Public domain W3C validator