MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2le Structured version   Visualization version   GIF version

Theorem itg2le 23407
Description: If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2le ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹𝑟𝐺) → (∫2𝐹) ≤ (∫2𝐺))

Proof of Theorem itg2le
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 9972 . . . . . . . . . 10 ℝ ∈ V
21a1i 11 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ℝ ∈ V)
3 i1ff 23344 . . . . . . . . . . 11 ( ∈ dom ∫1:ℝ⟶ℝ)
43adantl 482 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → :ℝ⟶ℝ)
5 ressxr 10028 . . . . . . . . . 10 ℝ ⊆ ℝ*
6 fss 6015 . . . . . . . . . 10 ((:ℝ⟶ℝ ∧ ℝ ⊆ ℝ*) → :ℝ⟶ℝ*)
74, 5, 6sylancl 693 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → :ℝ⟶ℝ*)
8 simpll 789 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞))
9 iccssxr 12195 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
10 fss 6015 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:ℝ⟶ℝ*)
118, 9, 10sylancl 693 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐹:ℝ⟶ℝ*)
12 simplr 791 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐺:ℝ⟶(0[,]+∞))
13 fss 6015 . . . . . . . . . 10 ((𝐺:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐺:ℝ⟶ℝ*)
1412, 9, 13sylancl 693 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐺:ℝ⟶ℝ*)
15 xrletr 11933 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1615adantl 482 . . . . . . . . 9 ((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
172, 7, 11, 14, 16caoftrn 6886 . . . . . . . 8 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ((𝑟𝐹𝐹𝑟𝐺) → 𝑟𝐺))
18 simplr 791 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1𝑟𝐺)) → 𝐺:ℝ⟶(0[,]+∞))
19 simprl 793 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1𝑟𝐺)) → ∈ dom ∫1)
20 simprr 795 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1𝑟𝐺)) → 𝑟𝐺)
21 itg2ub 23401 . . . . . . . . . 10 ((𝐺:ℝ⟶(0[,]+∞) ∧ ∈ dom ∫1𝑟𝐺) → (∫1) ≤ (∫2𝐺))
2218, 19, 20, 21syl3anc 1323 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1𝑟𝐺)) → (∫1) ≤ (∫2𝐺))
2322expr 642 . . . . . . . 8 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → (𝑟𝐺 → (∫1) ≤ (∫2𝐺)))
2417, 23syld 47 . . . . . . 7 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ((𝑟𝐹𝐹𝑟𝐺) → (∫1) ≤ (∫2𝐺)))
2524ancomsd 470 . . . . . 6 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ((𝐹𝑟𝐺𝑟𝐹) → (∫1) ≤ (∫2𝐺)))
2625exp4b 631 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → ( ∈ dom ∫1 → (𝐹𝑟𝐺 → (𝑟𝐹 → (∫1) ≤ (∫2𝐺)))))
2726com23 86 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → (𝐹𝑟𝐺 → ( ∈ dom ∫1 → (𝑟𝐹 → (∫1) ≤ (∫2𝐺)))))
28273impia 1258 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹𝑟𝐺) → ( ∈ dom ∫1 → (𝑟𝐹 → (∫1) ≤ (∫2𝐺))))
2928ralrimiv 2964 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹𝑟𝐺) → ∀ ∈ dom ∫1(𝑟𝐹 → (∫1) ≤ (∫2𝐺)))
30 simp1 1059 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹𝑟𝐺) → 𝐹:ℝ⟶(0[,]+∞))
31 itg2cl 23400 . . . 4 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) ∈ ℝ*)
32313ad2ant2 1081 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹𝑟𝐺) → (∫2𝐺) ∈ ℝ*)
33 itg2leub 23402 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2𝐺) ∈ ℝ*) → ((∫2𝐹) ≤ (∫2𝐺) ↔ ∀ ∈ dom ∫1(𝑟𝐹 → (∫1) ≤ (∫2𝐺))))
3430, 32, 33syl2anc 692 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹𝑟𝐺) → ((∫2𝐹) ≤ (∫2𝐺) ↔ ∀ ∈ dom ∫1(𝑟𝐹 → (∫1) ≤ (∫2𝐺))))
3529, 34mpbird 247 1 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹𝑟𝐺) → (∫2𝐹) ≤ (∫2𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1992  wral 2912  Vcvv 3191  wss 3560   class class class wbr 4618  dom cdm 5079  wf 5846  cfv 5850  (class class class)co 6605  𝑟 cofr 6850  cr 9880  0cc0 9881  +∞cpnf 10016  *cxr 10018  cle 10020  [,]cicc 12117  1citg1 23285  2citg2 23286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-ofr 6852  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-q 11733  df-rp 11777  df-xadd 11891  df-ioo 12118  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-fl 12530  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-sum 14346  df-xmet 19653  df-met 19654  df-ovol 23135  df-vol 23136  df-mbf 23289  df-itg1 23290  df-itg2 23291
This theorem is referenced by:  itg2const2  23409  itg2monolem1  23418  itg2mono  23421  itg2gt0  23428  itg2cnlem2  23430  iblss  23472  itgle  23477  ibladdlem  23487  iblabs  23496  iblabsr  23497  iblmulc2  23498  bddmulibl  23506  itg2gt0cn  33083  ibladdnclem  33084  iblabsnc  33092  iblmulc2nc  33093  bddiblnc  33098  ftc1anclem4  33106  ftc1anclem6  33108  ftc1anclem7  33109  ftc1anclem8  33110  ftc1anc  33111
  Copyright terms: Public domain W3C validator