Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2monolem2 Structured version   Visualization version   GIF version

Theorem itg2monolem2 23419
 Description: Lemma for itg2mono 23421. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘𝑟 ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
itg2monolem2.7 (𝜑𝑃 ∈ dom ∫1)
itg2monolem2.8 (𝜑𝑃𝑟𝐺)
itg2monolem2.9 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
Assertion
Ref Expression
itg2monolem2 (𝜑𝑆 ∈ ℝ)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑃,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2monolem2
StepHypRef Expression
1 itg2mono.6 . . 3 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
2 itg2mono.3 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
3 icossicc 12199 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
4 fss 6015 . . . . . . . 8 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
52, 3, 4sylancl 693 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
6 itg2cl 23400 . . . . . . 7 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
75, 6syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
8 eqid 2626 . . . . . 6 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
97, 8fmptd 6341 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
10 frn 6012 . . . . 5 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ* → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
119, 10syl 17 . . . 4 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
12 supxrcl 12085 . . . 4 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
1311, 12syl 17 . . 3 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
141, 13syl5eqel 2708 . 2 (𝜑𝑆 ∈ ℝ*)
15 itg2monolem2.7 . . 3 (𝜑𝑃 ∈ dom ∫1)
16 itg1cl 23353 . . 3 (𝑃 ∈ dom ∫1 → (∫1𝑃) ∈ ℝ)
1715, 16syl 17 . 2 (𝜑 → (∫1𝑃) ∈ ℝ)
18 mnfxr 10041 . . . 4 -∞ ∈ ℝ*
1918a1i 11 . . 3 (𝜑 → -∞ ∈ ℝ*)
20 1nn 10976 . . . . 5 1 ∈ ℕ
215ralrimiva 2965 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞))
22 fveq2 6150 . . . . . . 7 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
2322feq1d 5989 . . . . . 6 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞)))
2423rspcv 3296 . . . . 5 (1 ∈ ℕ → (∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞) → (𝐹‘1):ℝ⟶(0[,]+∞)))
2520, 21, 24mpsyl 68 . . . 4 (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞))
26 itg2cl 23400 . . . 4 ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*)
2725, 26syl 17 . . 3 (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*)
28 itg2ge0 23403 . . . . 5 ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1)))
2925, 28syl 17 . . . 4 (𝜑 → 0 ≤ (∫2‘(𝐹‘1)))
30 mnflt0 11903 . . . . 5 -∞ < 0
31 0xr 10031 . . . . . . 7 0 ∈ ℝ*
32 xrltletr 11932 . . . . . . 7 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1))))
3318, 31, 32mp3an12 1411 . . . . . 6 ((∫2‘(𝐹‘1)) ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1))))
3427, 33syl 17 . . . . 5 (𝜑 → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1))))
3530, 34mpani 711 . . . 4 (𝜑 → (0 ≤ (∫2‘(𝐹‘1)) → -∞ < (∫2‘(𝐹‘1))))
3629, 35mpd 15 . . 3 (𝜑 → -∞ < (∫2‘(𝐹‘1)))
3722fveq2d 6154 . . . . . . . 8 (𝑛 = 1 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹‘1)))
38 fvex 6160 . . . . . . . 8 (∫2‘(𝐹‘1)) ∈ V
3937, 8, 38fvmpt 6240 . . . . . . 7 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1)))
4020, 39ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1))
41 ffn 6004 . . . . . . . 8 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ* → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
429, 41syl 17 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
43 fnfvelrn 6313 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
4442, 20, 43sylancl 693 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
4540, 44syl5eqelr 2709 . . . . 5 (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
46 supxrub 12094 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
4711, 45, 46syl2anc 692 . . . 4 (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
4847, 1syl6breqr 4660 . . 3 (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆)
4919, 27, 14, 36, 48xrltletrd 11936 . 2 (𝜑 → -∞ < 𝑆)
50 itg2monolem2.9 . . . 4 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
5117rexrd 10034 . . . . 5 (𝜑 → (∫1𝑃) ∈ ℝ*)
52 xrltnle 10050 . . . . 5 ((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ*) → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
5314, 51, 52syl2anc 692 . . . 4 (𝜑 → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
5450, 53mpbird 247 . . 3 (𝜑𝑆 < (∫1𝑃))
55 xrltle 11926 . . . 4 ((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ*) → (𝑆 < (∫1𝑃) → 𝑆 ≤ (∫1𝑃)))
5614, 51, 55syl2anc 692 . . 3 (𝜑 → (𝑆 < (∫1𝑃) → 𝑆 ≤ (∫1𝑃)))
5754, 56mpd 15 . 2 (𝜑𝑆 ≤ (∫1𝑃))
58 xrre 11942 . 2 (((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ) ∧ (-∞ < 𝑆𝑆 ≤ (∫1𝑃))) → 𝑆 ∈ ℝ)
5914, 17, 49, 57, 58syl22anc 1324 1 (𝜑𝑆 ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1992  ∀wral 2912  ∃wrex 2913   ⊆ wss 3560   class class class wbr 4618   ↦ cmpt 4678  dom cdm 5079  ran crn 5080   Fn wfn 5845  ⟶wf 5846  ‘cfv 5850  (class class class)co 6605   ∘𝑟 cofr 6850  supcsup 8291  ℝcr 9880  0cc0 9881  1c1 9882   + caddc 9884  +∞cpnf 10016  -∞cmnf 10017  ℝ*cxr 10018   < clt 10019   ≤ cle 10020  ℕcn 10965  [,)cico 12116  [,]cicc 12117  MblFncmbf 23284  ∫1citg1 23285  ∫2citg2 23286 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-ofr 6852  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-q 11733  df-rp 11777  df-xadd 11891  df-ioo 12118  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-fl 12530  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-sum 14346  df-xmet 19653  df-met 19654  df-ovol 23135  df-vol 23136  df-mbf 23289  df-itg1 23290  df-itg2 23291 This theorem is referenced by:  itg2monolem3  23420
 Copyright terms: Public domain W3C validator