MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulc Structured version   Visualization version   GIF version

Theorem itg2mulc 23420
Description: The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itg2mulc.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2mulc.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2mulc.4 (𝜑𝐴 ∈ (0[,)+∞))
Assertion
Ref Expression
itg2mulc (𝜑 → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)))

Proof of Theorem itg2mulc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . 5 (𝜑𝐹:ℝ⟶(0[,)+∞))
21adantr 481 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐹:ℝ⟶(0[,)+∞))
3 itg2mulc.3 . . . . 5 (𝜑 → (∫2𝐹) ∈ ℝ)
43adantr 481 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) ∈ ℝ)
5 itg2mulc.4 . . . . . . . 8 (𝜑𝐴 ∈ (0[,)+∞))
6 elrege0 12220 . . . . . . . 8 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
75, 6sylib 208 . . . . . . 7 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
87simpld 475 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98anim1i 591 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
10 elrp 11778 . . . . 5 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
119, 10sylibr 224 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
122, 4, 11itg2mulclem 23419 . . 3 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)))
13 ge0mulcl 12227 . . . . . . . . 9 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
1413adantl 482 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
15 fconst6g 6051 . . . . . . . . 9 (𝐴 ∈ (0[,)+∞) → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
165, 15syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
17 reex 9971 . . . . . . . . 9 ℝ ∈ V
1817a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
19 inidm 3800 . . . . . . . 8 (ℝ ∩ ℝ) = ℝ
2014, 16, 1, 18, 18, 19off 6865 . . . . . . 7 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,)+∞))
2120adantr 481 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,)+∞))
22 icossicc 12202 . . . . . . . . 9 (0[,)+∞) ⊆ (0[,]+∞)
23 fss 6013 . . . . . . . . 9 ((((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞))
2420, 22, 23sylancl 693 . . . . . . . 8 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞))
2524adantr 481 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞))
268, 3remulcld 10014 . . . . . . . 8 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ)
2726adantr 481 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (∫2𝐹)) ∈ ℝ)
28 itg2lecl 23411 . . . . . . 7 ((((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞) ∧ (𝐴 · (∫2𝐹)) ∈ ℝ ∧ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹))) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℝ)
2925, 27, 12, 28syl3anc 1323 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℝ)
3011rpreccld 11826 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ+)
3121, 29, 30itg2mulclem 23419 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {(1 / 𝐴)}) ∘𝑓 · ((ℝ × {𝐴}) ∘𝑓 · 𝐹))) ≤ ((1 / 𝐴) · (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹))))
322feqmptd 6206 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
33 rge0ssre 12222 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
34 ax-resscn 9937 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
3533, 34sstri 3592 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℂ
36 fss 6013 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
371, 35, 36sylancl 693 . . . . . . . . . . . 12 (𝜑𝐹:ℝ⟶ℂ)
3837adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐹:ℝ⟶ℂ)
3938ffvelrnda 6315 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℂ)
4039mulid2d 10002 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → (1 · (𝐹𝑦)) = (𝐹𝑦))
4140mpteq2dva 4704 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))) = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4232, 41eqtr4d 2658 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))))
4317a1i 11 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ℝ ∈ V)
44 1red 9999 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
4543, 30, 11ofc12 6875 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘𝑓 · (ℝ × {𝐴})) = (ℝ × {((1 / 𝐴) · 𝐴)}))
46 fconstmpt 5123 . . . . . . . . . 10 (ℝ × {((1 / 𝐴) · 𝐴)}) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴))
4745, 46syl6eq 2671 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘𝑓 · (ℝ × {𝐴})) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴)))
488recnd 10012 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
4948adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
5011rpne0d 11821 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≠ 0)
5149, 50recid2d 10741 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((1 / 𝐴) · 𝐴) = 1)
5251mpteq2dv 4705 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴)) = (𝑦 ∈ ℝ ↦ 1))
5347, 52eqtrd 2655 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘𝑓 · (ℝ × {𝐴})) = (𝑦 ∈ ℝ ↦ 1))
5443, 44, 39, 53, 32offval2 6867 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((ℝ × {(1 / 𝐴)}) ∘𝑓 · (ℝ × {𝐴})) ∘𝑓 · 𝐹) = (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))))
5530rpcnd 11818 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
56 fconst6g 6051 . . . . . . . . 9 ((1 / 𝐴) ∈ ℂ → (ℝ × {(1 / 𝐴)}):ℝ⟶ℂ)
5755, 56syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (ℝ × {(1 / 𝐴)}):ℝ⟶ℂ)
58 fconst6g 6051 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℝ × {𝐴}):ℝ⟶ℂ)
5949, 58syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (ℝ × {𝐴}):ℝ⟶ℂ)
60 mulass 9968 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6160adantl 482 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6243, 57, 59, 38, 61caofass 6884 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((ℝ × {(1 / 𝐴)}) ∘𝑓 · (ℝ × {𝐴})) ∘𝑓 · 𝐹) = ((ℝ × {(1 / 𝐴)}) ∘𝑓 · ((ℝ × {𝐴}) ∘𝑓 · 𝐹)))
6342, 54, 623eqtr2d 2661 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = ((ℝ × {(1 / 𝐴)}) ∘𝑓 · ((ℝ × {𝐴}) ∘𝑓 · 𝐹)))
6463fveq2d 6152 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) = (∫2‘((ℝ × {(1 / 𝐴)}) ∘𝑓 · ((ℝ × {𝐴}) ∘𝑓 · 𝐹))))
6529recnd 10012 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℂ)
6665, 49, 50divrec2d 10749 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) / 𝐴) = ((1 / 𝐴) · (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹))))
6731, 64, 663brtr4d 4645 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) ≤ ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) / 𝐴))
684, 29, 11lemuldiv2d 11866 . . . 4 ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ↔ (∫2𝐹) ≤ ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) / 𝐴)))
6967, 68mpbird 247 . . 3 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)))
70 itg2cl 23405 . . . . . 6 (((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℝ*)
7124, 70syl 17 . . . . 5 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℝ*)
7226rexrd 10033 . . . . 5 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ*)
73 xrletri3 11929 . . . . 5 (((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℝ* ∧ (𝐴 · (∫2𝐹)) ∈ ℝ*) → ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)))))
7471, 72, 73syl2anc 692 . . . 4 (𝜑 → ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)))))
7574adantr 481 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)))))
7612, 69, 75mpbir2and 956 . 2 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)))
7717a1i 11 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → ℝ ∈ V)
7837adantr 481 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 𝐹:ℝ⟶ℂ)
798adantr 481 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 𝐴 ∈ ℝ)
80 0re 9984 . . . . . . 7 0 ∈ ℝ
8180a1i 11 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 0 ∈ ℝ)
82 simplr 791 . . . . . . . 8 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → 0 = 𝐴)
8382oveq1d 6619 . . . . . . 7 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = (𝐴 · 𝑥))
84 mul02 10158 . . . . . . . 8 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
8584adantl 482 . . . . . . 7 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
8683, 85eqtr3d 2657 . . . . . 6 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) = 0)
8777, 78, 79, 81, 86caofid2 6881 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) = (ℝ × {0}))
8887fveq2d 6152 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (∫2‘(ℝ × {0})))
89 itg20 23410 . . . 4 (∫2‘(ℝ × {0})) = 0
9088, 89syl6eq 2671 . . 3 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = 0)
913adantr 481 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → (∫2𝐹) ∈ ℝ)
9291recnd 10012 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (∫2𝐹) ∈ ℂ)
9392mul02d 10178 . . 3 ((𝜑 ∧ 0 = 𝐴) → (0 · (∫2𝐹)) = 0)
94 simpr 477 . . . 4 ((𝜑 ∧ 0 = 𝐴) → 0 = 𝐴)
9594oveq1d 6619 . . 3 ((𝜑 ∧ 0 = 𝐴) → (0 · (∫2𝐹)) = (𝐴 · (∫2𝐹)))
9690, 93, 953eqtr2d 2661 . 2 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)))
977simprd 479 . . 3 (𝜑 → 0 ≤ 𝐴)
98 leloe 10068 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9980, 8, 98sylancr 694 . . 3 (𝜑 → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
10097, 99mpbid 222 . 2 (𝜑 → (0 < 𝐴 ∨ 0 = 𝐴))
10176, 96, 100mpjaodan 826 1 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3186  wss 3555  {csn 4148   class class class wbr 4613  cmpt 4673   × cxp 5072  wf 5843  cfv 5847  (class class class)co 6604  𝑓 cof 6848  cc 9878  cr 9879  0cc0 9880  1c1 9881   · cmul 9885  +∞cpnf 10015  *cxr 10017   < clt 10018  cle 10019   / cdiv 10628  +crp 11776  [,)cico 12119  [,]cicc 12120  2citg2 23291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xadd 11891  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-xmet 19658  df-met 19659  df-ovol 23140  df-vol 23141  df-mbf 23294  df-itg1 23295  df-itg2 23296  df-0p 23343
This theorem is referenced by:  iblmulc2  23503  itgmulc2lem1  23504  bddmulibl  23511  iblmulc2nc  33104  itgmulc2nclem1  33105
  Copyright terms: Public domain W3C validator