MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2split Structured version   Visualization version   GIF version

Theorem itg2split 24344
Description: The 2 integral splits under an almost disjoint union. (The proof avoids the use of itg2add 24354 which requires CC.) (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2split.a (𝜑𝐴 ∈ dom vol)
itg2split.b (𝜑𝐵 ∈ dom vol)
itg2split.i (𝜑 → (vol*‘(𝐴𝐵)) = 0)
itg2split.u (𝜑𝑈 = (𝐴𝐵))
itg2split.c ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
itg2split.f 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
itg2split.g 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
itg2split.h 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
itg2split.sf (𝜑 → (∫2𝐹) ∈ ℝ)
itg2split.sg (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2split (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem itg2split
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2split.c . . . . . 6 ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
21adantlr 713 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
3 0e0iccpnf 12841 . . . . . 6 0 ∈ (0[,]+∞)
43a1i 11 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑈) → 0 ∈ (0[,]+∞))
52, 4ifclda 4500 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
6 itg2split.h . . . 4 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
75, 6fmptd 6872 . . 3 (𝜑𝐻:ℝ⟶(0[,]+∞))
8 itg2cl 24327 . . 3 (𝐻:ℝ⟶(0[,]+∞) → (∫2𝐻) ∈ ℝ*)
97, 8syl 17 . 2 (𝜑 → (∫2𝐻) ∈ ℝ*)
10 itg2split.sf . . . 4 (𝜑 → (∫2𝐹) ∈ ℝ)
11 itg2split.sg . . . 4 (𝜑 → (∫2𝐺) ∈ ℝ)
1210, 11readdcld 10664 . . 3 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ)
1312rexrd 10685 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*)
14 itg2split.a . . 3 (𝜑𝐴 ∈ dom vol)
15 itg2split.b . . 3 (𝜑𝐵 ∈ dom vol)
16 itg2split.i . . 3 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
17 itg2split.u . . 3 (𝜑𝑈 = (𝐴𝐵))
18 itg2split.f . . 3 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
19 itg2split.g . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
2014, 15, 16, 17, 1, 18, 19, 6, 10, 11itg2splitlem 24343 . 2 (𝜑 → (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)))
2111adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫2𝐺) ∈ ℝ)
22 itg2lecl 24333 . . . . . . . . 9 ((𝐻:ℝ⟶(0[,]+∞) ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ ∧ (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺))) → (∫2𝐻) ∈ ℝ)
237, 12, 20, 22syl3anc 1367 . . . . . . . 8 (𝜑 → (∫2𝐻) ∈ ℝ)
2423adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫2𝐻) ∈ ℝ)
25 itg1cl 24280 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
2625ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫1𝑓) ∈ ℝ)
27 simprll 777 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓 ∈ dom ∫1)
28 simprrl 779 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔 ∈ dom ∫1)
2927, 28itg1add 24296 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1‘(𝑓f + 𝑔)) = ((∫1𝑓) + (∫1𝑔)))
307adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝐻:ℝ⟶(0[,]+∞))
3127, 28i1fadd 24290 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑓f + 𝑔) ∈ dom ∫1)
32 inss1 4204 . . . . . . . . . . . . . . . 16 (𝐴𝐵) ⊆ 𝐴
33 mblss 24126 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3414, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ)
3532, 34sstrid 3977 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐵) ⊆ ℝ)
3635adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝐴𝐵) ⊆ ℝ)
3716adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (vol*‘(𝐴𝐵)) = 0)
38 nfv 1911 . . . . . . . . . . . . . . . . . 18 𝑥𝜑
39 nfv 1911 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓 ∈ dom ∫1
40 nfcv 2977 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑓
41 nfcv 2977 . . . . . . . . . . . . . . . . . . . . 21 𝑥r
42 nfmpt1 5156 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
4318, 42nfcxfr 2975 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
4440, 41, 43nfbr 5105 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓r𝐹
4539, 44nfan 1896 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑓 ∈ dom ∫1𝑓r𝐹)
46 nfv 1911 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔 ∈ dom ∫1
47 nfcv 2977 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑔
48 nfmpt1 5156 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
4919, 48nfcxfr 2975 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
5047, 41, 49nfbr 5105 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔r𝐺
5146, 50nfan 1896 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑔 ∈ dom ∫1𝑔r𝐺)
5245, 51nfan 1896 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))
5338, 52nfan 1896 . . . . . . . . . . . . . . . . 17 𝑥(𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺)))
54 eldifi 4102 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → 𝑥 ∈ ℝ)
55 i1ff 24271 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
5627, 55syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓:ℝ⟶ℝ)
5756ffnd 6509 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓 Fn ℝ)
58 i1ff 24271 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
5928, 58syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔:ℝ⟶ℝ)
6059ffnd 6509 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔 Fn ℝ)
61 reex 10622 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
6261a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ℝ ∈ V)
63 inidm 4194 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ∩ ℝ) = ℝ
64 eqidd 2822 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) = (𝑓𝑥))
65 eqidd 2822 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) = (𝑔𝑥))
6657, 60, 62, 62, 63, 64, 65ofval 7412 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → ((𝑓f + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
6754, 66sylan2 594 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓f + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
68 ffvelrn 6843 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℝ)
6956, 54, 68syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ∈ ℝ)
70 ffvelrn 6843 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ ℝ)
7159, 54, 70syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ∈ ℝ)
7269, 71readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ)
7372rexrd 10685 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7473adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7569adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
7675rexrd 10685 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ*)
77 iccssxr 12813 . . . . . . . . . . . . . . . . . . . . . . 23 (0[,]+∞) ⊆ ℝ*
78 ffvelrn 6843 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐻:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) ∈ (0[,]+∞))
7930, 54, 78syl2an 597 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ (0[,]+∞))
8077, 79sseldi 3964 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ ℝ*)
8180adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
8271adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
83 0red 10638 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 0 ∈ ℝ)
84 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑔r𝐺)
8561a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → ℝ ∈ V)
86 fvexd 6679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ V)
87 ssun2 4148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝐵 ⊆ (𝐴𝐵)
8887, 17sseqtrrid 4019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝐵𝑈)
8988sselda 3966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑥𝐵) → 𝑥𝑈)
9089adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥𝑈)
9190, 2syldan 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
923a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
9391, 92ifclda 4500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
9493adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
95 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑔 Fn ℝ) → 𝑔 Fn ℝ)
96 dffn5 6718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑔 Fn ℝ ↔ 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
9795, 96sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
9819a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0)))
9985, 86, 94, 97, 98ofrfval2 7421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑔 Fn ℝ) → (𝑔r𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10060, 99syldan 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑔r𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10184, 100mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
102101r19.21bi 3208 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
10354, 102sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
104103adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
105 eldifn 4103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ¬ 𝑥 ∈ (𝐴𝐵))
106105adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ 𝑥 ∈ (𝐴𝐵))
107 elin 4168 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
108106, 107sylnib 330 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ (𝑥𝐴𝑥𝐵))
109 imnan 402 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
110108, 109sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑥𝐴 → ¬ 𝑥𝐵))
111110imp 409 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
112111iffalsed 4477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐵, 𝐶, 0) = 0)
113104, 112breqtrd 5084 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ 0)
11482, 83, 75, 113leadd2dd 11249 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ ((𝑓𝑥) + 0))
11575recnd 10663 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℂ)
116115addid1d 10834 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + 0) = (𝑓𝑥))
117114, 116breqtrd 5084 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑓𝑥))
118 simprlr 778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → 𝑓r𝐹)
11961a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → ℝ ∈ V)
120 fvexd 6679 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ V)
121 ssun1 4147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝐴 ⊆ (𝐴𝐵)
122121, 17sseqtrrid 4019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐴𝑈)
123122sselda 3966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑥𝐴) → 𝑥𝑈)
124123adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝑈)
125124, 2syldan 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
1263a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
127125, 126ifclda 4500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
128127adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
129 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑓 Fn ℝ) → 𝑓 Fn ℝ)
130 dffn5 6718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn ℝ ↔ 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
131129, 130sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
13218a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
133119, 120, 128, 131, 132ofrfval2 7421 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑓 Fn ℝ) → (𝑓r𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
13457, 133syldan 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑓r𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
135118, 134mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
136135r19.21bi 3208 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
13754, 136sylan2 594 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
138137adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
139122ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → 𝐴𝑈)
140139sselda 3966 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 𝑥𝑈)
141140iftrued 4474 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = 𝐶)
142 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
1435adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
1446fvmpt2 6773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ ∧ if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞)) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
145142, 143, 144syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
14654, 145sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
147146adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
148 iftrue 4472 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
149148adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
150141, 147, 1493eqtr4d 2866 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐴, 𝐶, 0))
151138, 150breqtrrd 5086 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ (𝐻𝑥))
15274, 76, 81, 117, 151xrletrd 12549 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
15373adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
15471adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
155154rexrd 10685 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ*)
15680adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
15769adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
158 0red 10638 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 0 ∈ ℝ)
159137adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
160 iffalse 4475 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
161160adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 0)
162159, 161breqtrd 5084 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ 0)
163157, 158, 154, 162leadd1dd 11248 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (0 + (𝑔𝑥)))
164154recnd 10663 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℂ)
165164addid2d 10835 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (0 + (𝑔𝑥)) = (𝑔𝑥))
166163, 165breqtrd 5084 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑔𝑥))
167103adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
168146adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
16917ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 𝑈 = (𝐴𝐵))
170169eleq2d 2898 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
171 biorf 933 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥𝐴 → (𝑥𝐵 ↔ (𝑥𝐴𝑥𝐵)))
172 elun 4124 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
173171, 172syl6rbbr 292 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝐴 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
174173adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
175170, 174bitrd 281 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥𝐵))
176175ifbid 4488 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = if(𝑥𝐵, 𝐶, 0))
177168, 176eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐵, 𝐶, 0))
178167, 177breqtrrd 5086 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ (𝐻𝑥))
179153, 155, 156, 166, 178xrletrd 12549 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
180152, 179pm2.61dan 811 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
18167, 180eqbrtrd 5080 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥))
182181ex 415 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥)))
18353, 182ralrimi 3216 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥))
184 nfv 1911 . . . . . . . . . . . . . . . . 17 𝑦((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥)
185 nfcv 2977 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓f + 𝑔)‘𝑦)
186 nfcv 2977 . . . . . . . . . . . . . . . . . 18 𝑥
187 nfmpt1 5156 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
1886, 187nfcxfr 2975 . . . . . . . . . . . . . . . . . . 19 𝑥𝐻
189 nfcv 2977 . . . . . . . . . . . . . . . . . . 19 𝑥𝑦
190188, 189nffv 6674 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑦)
191185, 186, 190nfbr 5105 . . . . . . . . . . . . . . . . 17 𝑥((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦)
192 fveq2 6664 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑓f + 𝑔)‘𝑥) = ((𝑓f + 𝑔)‘𝑦))
193 fveq2 6664 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
194192, 193breq12d 5071 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦)))
195184, 191, 194cbvralw 3441 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦))
196183, 195sylib 220 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦))
197196r19.21bi 3208 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓f + 𝑔)‘𝑦) ≤ (𝐻𝑦))
19830, 31, 36, 37, 197itg2uba 24338 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1‘(𝑓f + 𝑔)) ≤ (∫2𝐻))
19929, 198eqbrtrrd 5082 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → ((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻))
20026adantrr 715 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1𝑓) ∈ ℝ)
201 itg1cl 24280 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → (∫1𝑔) ∈ ℝ)
20228, 201syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1𝑔) ∈ ℝ)
20323adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫2𝐻) ∈ ℝ)
204200, 202, 203leaddsub2d 11236 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻) ↔ (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
205199, 204mpbid 234 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓r𝐹) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺))) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
206205anassrs 470 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ (𝑔 ∈ dom ∫1𝑔r𝐺)) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
207206expr 459 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) ∧ 𝑔 ∈ dom ∫1) → (𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
208207ralrimiva 3182 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ∀𝑔 ∈ dom ∫1(𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
20993, 19fmptd 6872 . . . . . . . . . 10 (𝜑𝐺:ℝ⟶(0[,]+∞))
210209adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → 𝐺:ℝ⟶(0[,]+∞))
21124, 26resubcld 11062 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ)
212211rexrd 10685 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*)
213 itg2leub 24329 . . . . . . . . 9 ((𝐺:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
214210, 212, 213syl2anc 586 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔r𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
215208, 214mpbird 259 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)))
21621, 24, 26, 215lesubd 11238 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐹)) → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))
217216expr 459 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
218217ralrimiva 3182 . . . 4 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
219127, 18fmptd 6872 . . . . 5 (𝜑𝐹:ℝ⟶(0[,]+∞))
22023, 11resubcld 11062 . . . . . 6 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ)
221220rexrd 10685 . . . . 5 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*)
222 itg2leub 24329 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*) → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
223219, 221, 222syl2anc 586 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
224218, 223mpbird 259 . . 3 (𝜑 → (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)))
225 leaddsub 11110 . . . 4 (((∫2𝐹) ∈ ℝ ∧ (∫2𝐺) ∈ ℝ ∧ (∫2𝐻) ∈ ℝ) → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
22610, 11, 23, 225syl3anc 1367 . . 3 (𝜑 → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
227224, 226mpbird 259 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))
2289, 13, 20, 227xrletrid 12542 1 (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cdif 3932  cun 3933  cin 3934  wss 3935  ifcif 4466   class class class wbr 5058  cmpt 5138  dom cdm 5549   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  f cof 7401  r cofr 7402  cr 10530  0cc0 10531   + caddc 10534  +∞cpnf 10666  *cxr 10668  cle 10670  cmin 10864  [,]cicc 12735  vol*covol 24057  volcvol 24058  1citg1 24210  2citg2 24211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215  df-itg2 24216
This theorem is referenced by:  itg2cnlem2  24357  itgsplit  24430  iblsplit  42244
  Copyright terms: Public domain W3C validator