MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2split Structured version   Visualization version   GIF version

Theorem itg2split 23422
Description: The 2 integral splits under an almost disjoint union. (The proof avoids the use of itg2add 23432 which requires CC.) (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2split.a (𝜑𝐴 ∈ dom vol)
itg2split.b (𝜑𝐵 ∈ dom vol)
itg2split.i (𝜑 → (vol*‘(𝐴𝐵)) = 0)
itg2split.u (𝜑𝑈 = (𝐴𝐵))
itg2split.c ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
itg2split.f 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
itg2split.g 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
itg2split.h 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
itg2split.sf (𝜑 → (∫2𝐹) ∈ ℝ)
itg2split.sg (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2split (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem itg2split
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2split.a . . 3 (𝜑𝐴 ∈ dom vol)
2 itg2split.b . . 3 (𝜑𝐵 ∈ dom vol)
3 itg2split.i . . 3 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
4 itg2split.u . . 3 (𝜑𝑈 = (𝐴𝐵))
5 itg2split.c . . 3 ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
6 itg2split.f . . 3 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
7 itg2split.g . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
8 itg2split.h . . 3 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
9 itg2split.sf . . 3 (𝜑 → (∫2𝐹) ∈ ℝ)
10 itg2split.sg . . 3 (𝜑 → (∫2𝐺) ∈ ℝ)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10itg2splitlem 23421 . 2 (𝜑 → (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)))
1210adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐺) ∈ ℝ)
135adantlr 750 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
14 0e0iccpnf 12225 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
1514a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑈) → 0 ∈ (0[,]+∞))
1613, 15ifclda 4092 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
1716, 8fmptd 6340 . . . . . . . . 9 (𝜑𝐻:ℝ⟶(0[,]+∞))
189, 10readdcld 10013 . . . . . . . . 9 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ)
19 itg2lecl 23411 . . . . . . . . 9 ((𝐻:ℝ⟶(0[,]+∞) ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ ∧ (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺))) → (∫2𝐻) ∈ ℝ)
2017, 18, 11, 19syl3anc 1323 . . . . . . . 8 (𝜑 → (∫2𝐻) ∈ ℝ)
2120adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐻) ∈ ℝ)
22 itg1cl 23358 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
2322ad2antrl 763 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫1𝑓) ∈ ℝ)
24 simprll 801 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓 ∈ dom ∫1)
25 simprrl 803 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔 ∈ dom ∫1)
2624, 25itg1add 23374 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1‘(𝑓𝑓 + 𝑔)) = ((∫1𝑓) + (∫1𝑔)))
2717adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝐻:ℝ⟶(0[,]+∞))
2824, 25i1fadd 23368 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑓𝑓 + 𝑔) ∈ dom ∫1)
29 inss1 3811 . . . . . . . . . . . . . . . 16 (𝐴𝐵) ⊆ 𝐴
30 mblss 23206 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
311, 30syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ)
3229, 31syl5ss 3594 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐵) ⊆ ℝ)
3332adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝐴𝐵) ⊆ ℝ)
343adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (vol*‘(𝐴𝐵)) = 0)
35 nfv 1840 . . . . . . . . . . . . . . . . . 18 𝑥𝜑
36 nfv 1840 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓 ∈ dom ∫1
37 nfcv 2761 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑓
38 nfcv 2761 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑟
39 nfmpt1 4707 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
406, 39nfcxfr 2759 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
4137, 38, 40nfbr 4659 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓𝑟𝐹
4236, 41nfan 1825 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑓 ∈ dom ∫1𝑓𝑟𝐹)
43 nfv 1840 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔 ∈ dom ∫1
44 nfcv 2761 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑔
45 nfmpt1 4707 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
467, 45nfcxfr 2759 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
4744, 38, 46nfbr 4659 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔𝑟𝐺
4843, 47nfan 1825 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑔 ∈ dom ∫1𝑔𝑟𝐺)
4942, 48nfan 1825 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))
5035, 49nfan 1825 . . . . . . . . . . . . . . . . 17 𝑥(𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺)))
51 eldifi 3710 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → 𝑥 ∈ ℝ)
52 i1ff 23349 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
5324, 52syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓:ℝ⟶ℝ)
54 ffn 6002 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:ℝ⟶ℝ → 𝑓 Fn ℝ)
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓 Fn ℝ)
56 i1ff 23349 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
5725, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔:ℝ⟶ℝ)
58 ffn 6002 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:ℝ⟶ℝ → 𝑔 Fn ℝ)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔 Fn ℝ)
60 reex 9971 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
6160a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ℝ ∈ V)
62 inidm 3800 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ∩ ℝ) = ℝ
63 eqidd 2622 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) = (𝑓𝑥))
64 eqidd 2622 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) = (𝑔𝑥))
6555, 59, 61, 61, 62, 63, 64ofval 6859 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
6651, 65sylan2 491 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
67 ffvelrn 6313 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℝ)
6853, 51, 67syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ∈ ℝ)
69 ffvelrn 6313 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ ℝ)
7057, 51, 69syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ∈ ℝ)
7168, 70readdcld 10013 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ)
7271rexrd 10033 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7372adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7468adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
7574rexrd 10033 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ*)
76 iccssxr 12198 . . . . . . . . . . . . . . . . . . . . . . 23 (0[,]+∞) ⊆ ℝ*
77 ffvelrn 6313 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐻:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) ∈ (0[,]+∞))
7827, 51, 77syl2an 494 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ (0[,]+∞))
7976, 78sseldi 3581 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ ℝ*)
8079adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
8170adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
82 0red 9985 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 0 ∈ ℝ)
83 simprrr 804 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔𝑟𝐺)
8460a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → ℝ ∈ V)
85 fvex 6158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑔𝑥) ∈ V
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ V)
87 ssun2 3755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝐵 ⊆ (𝐴𝐵)
8887, 4syl5sseqr 3633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝐵𝑈)
8988sselda 3583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑥𝐵) → 𝑥𝑈)
9089adantlr 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥𝑈)
9190, 13syldan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
9214a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
9391, 92ifclda 4092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
9493adantlr 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
95 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑔 Fn ℝ) → 𝑔 Fn ℝ)
96 dffn5 6198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑔 Fn ℝ ↔ 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
9795, 96sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
987a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0)))
9984, 86, 94, 97, 98ofrfval2 6868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑔 Fn ℝ) → (𝑔𝑟𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10059, 99syldan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑔𝑟𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10183, 100mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
102101r19.21bi 2927 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
10351, 102sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
104103adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
105 eldifn 3711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ¬ 𝑥 ∈ (𝐴𝐵))
106105adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ 𝑥 ∈ (𝐴𝐵))
107 elin 3774 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
108106, 107sylnib 318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ (𝑥𝐴𝑥𝐵))
109 imnan 438 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
110108, 109sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑥𝐴 → ¬ 𝑥𝐵))
111110imp 445 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
112111iffalsed 4069 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐵, 𝐶, 0) = 0)
113104, 112breqtrd 4639 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ 0)
11481, 82, 74, 113leadd2dd 10586 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ ((𝑓𝑥) + 0))
11574recnd 10012 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℂ)
116115addid1d 10180 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + 0) = (𝑓𝑥))
117114, 116breqtrd 4639 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑓𝑥))
118 simprlr 802 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓𝑟𝐹)
11960a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → ℝ ∈ V)
120 fvex 6158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓𝑥) ∈ V
121120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ V)
122 ssun1 3754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝐴 ⊆ (𝐴𝐵)
123122, 4syl5sseqr 3633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐴𝑈)
124123sselda 3583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑥𝐴) → 𝑥𝑈)
125124adantlr 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝑈)
126125, 13syldan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
12714a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
128126, 127ifclda 4092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
129128adantlr 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
130 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑓 Fn ℝ) → 𝑓 Fn ℝ)
131 dffn5 6198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn ℝ ↔ 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
132130, 131sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
1336a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
134119, 121, 129, 132, 133ofrfval2 6868 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑓 Fn ℝ) → (𝑓𝑟𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
13555, 134syldan 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑓𝑟𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
136118, 135mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
137136r19.21bi 2927 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
13851, 137sylan2 491 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
139138adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
140123ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → 𝐴𝑈)
141140sselda 3583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 𝑥𝑈)
142141iftrued 4066 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = 𝐶)
143 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
14416adantlr 750 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
1458fvmpt2 6248 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ ∧ if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞)) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
146143, 144, 145syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
14751, 146sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
148147adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
149 iftrue 4064 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
150149adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
151142, 148, 1503eqtr4d 2665 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐴, 𝐶, 0))
152139, 151breqtrrd 4641 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ (𝐻𝑥))
15373, 75, 80, 117, 152xrletrd 11937 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
15472adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
15570adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
156155rexrd 10033 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ*)
15779adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
15868adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
159 0red 9985 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 0 ∈ ℝ)
160138adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
161 iffalse 4067 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
162161adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 0)
163160, 162breqtrd 4639 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ 0)
164158, 159, 155, 163leadd1dd 10585 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (0 + (𝑔𝑥)))
165155recnd 10012 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℂ)
166165addid2d 10181 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (0 + (𝑔𝑥)) = (𝑔𝑥))
167164, 166breqtrd 4639 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑔𝑥))
168103adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
169147adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
1704ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 𝑈 = (𝐴𝐵))
171170eleq2d 2684 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
172 biorf 420 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥𝐴 → (𝑥𝐵 ↔ (𝑥𝐴𝑥𝐵)))
173 elun 3731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
174172, 173syl6rbbr 279 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝐴 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
175174adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
176171, 175bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥𝐵))
177176ifbid 4080 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = if(𝑥𝐵, 𝐶, 0))
178169, 177eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐵, 𝐶, 0))
179168, 178breqtrrd 4641 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ (𝐻𝑥))
180154, 156, 157, 167, 179xrletrd 11937 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
181153, 180pm2.61dan 831 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
18266, 181eqbrtrd 4635 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥))
183182ex 450 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥)))
18450, 183ralrimi 2951 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥))
185 nfv 1840 . . . . . . . . . . . . . . . . 17 𝑦((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥)
186 nfcv 2761 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓𝑓 + 𝑔)‘𝑦)
187 nfcv 2761 . . . . . . . . . . . . . . . . . 18 𝑥
188 nfmpt1 4707 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
1898, 188nfcxfr 2759 . . . . . . . . . . . . . . . . . . 19 𝑥𝐻
190 nfcv 2761 . . . . . . . . . . . . . . . . . . 19 𝑥𝑦
191189, 190nffv 6155 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑦)
192186, 187, 191nfbr 4659 . . . . . . . . . . . . . . . . 17 𝑥((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦)
193 fveq2 6148 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑓 + 𝑔)‘𝑦))
194 fveq2 6148 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
195193, 194breq12d 4626 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦)))
196185, 192, 195cbvral 3155 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
197184, 196sylib 208 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
198197r19.21bi 2927 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
19927, 28, 33, 34, 198itg2uba 23416 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1‘(𝑓𝑓 + 𝑔)) ≤ (∫2𝐻))
20026, 199eqbrtrrd 4637 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻))
20123adantrr 752 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑓) ∈ ℝ)
202 itg1cl 23358 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → (∫1𝑔) ∈ ℝ)
20325, 202syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑔) ∈ ℝ)
20420adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫2𝐻) ∈ ℝ)
205201, 203, 204leaddsub2d 10573 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻) ↔ (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
206200, 205mpbid 222 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
207206anassrs 679 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺)) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
208207expr 642 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) ∧ 𝑔 ∈ dom ∫1) → (𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
209208ralrimiva 2960 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
21093, 7fmptd 6340 . . . . . . . . . 10 (𝜑𝐺:ℝ⟶(0[,]+∞))
211210adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → 𝐺:ℝ⟶(0[,]+∞))
21221, 23resubcld 10402 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ)
213212rexrd 10033 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*)
214 itg2leub 23407 . . . . . . . . 9 ((𝐺:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
215211, 213, 214syl2anc 692 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
216209, 215mpbird 247 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)))
21712, 21, 23, 216lesubd 10575 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))
218217expr 642 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
219218ralrimiva 2960 . . . 4 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
220128, 6fmptd 6340 . . . . 5 (𝜑𝐹:ℝ⟶(0[,]+∞))
22120, 10resubcld 10402 . . . . . 6 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ)
222221rexrd 10033 . . . . 5 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*)
223 itg2leub 23407 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*) → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
224220, 222, 223syl2anc 692 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
225219, 224mpbird 247 . . 3 (𝜑 → (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)))
226 leaddsub 10448 . . . 4 (((∫2𝐹) ∈ ℝ ∧ (∫2𝐺) ∈ ℝ ∧ (∫2𝐻) ∈ ℝ) → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
2279, 10, 20, 226syl3anc 1323 . . 3 (𝜑 → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
228225, 227mpbird 247 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))
229 itg2cl 23405 . . . 4 (𝐻:ℝ⟶(0[,]+∞) → (∫2𝐻) ∈ ℝ*)
23017, 229syl 17 . . 3 (𝜑 → (∫2𝐻) ∈ ℝ*)
23118rexrd 10033 . . 3 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*)
232 xrletri3 11929 . . 3 (((∫2𝐻) ∈ ℝ* ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*) → ((∫2𝐻) = ((∫2𝐹) + (∫2𝐺)) ↔ ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ∧ ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))))
233230, 231, 232syl2anc 692 . 2 (𝜑 → ((∫2𝐻) = ((∫2𝐹) + (∫2𝐺)) ↔ ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ∧ ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))))
23411, 228, 233mpbir2and 956 1 (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  cdif 3552  cun 3553  cin 3554  wss 3555  ifcif 4058   class class class wbr 4613  cmpt 4673  dom cdm 5074   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  𝑓 cof 6848  𝑟 cofr 6849  cr 9879  0cc0 9880   + caddc 9883  +∞cpnf 10015  *cxr 10017  cle 10019  cmin 10210  [,]cicc 12120  vol*covol 23138  volcvol 23139  1citg1 23290  2citg2 23291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-rest 16004  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-cmp 21100  df-ovol 23140  df-vol 23141  df-mbf 23294  df-itg1 23295  df-itg2 23296
This theorem is referenced by:  itg2cnlem2  23435  itgsplit  23508  iblsplit  39486
  Copyright terms: Public domain W3C validator