MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2ub Structured version   Visualization version   GIF version

Theorem itg2ub 24328
Description: The integral of a nonnegative real function 𝐹 is an upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2ub ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1𝐺r𝐹) → (∫1𝐺) ≤ (∫2𝐹))

Proof of Theorem itg2ub
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
21itg2lcl 24322 . . 3 {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ*
31itg2lr 24325 . . . 4 ((𝐺 ∈ dom ∫1𝐺r𝐹) → (∫1𝐺) ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))})
433adant1 1126 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1𝐺r𝐹) → (∫1𝐺) ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))})
5 supxrub 12711 . . 3 (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ⊆ ℝ* ∧ (∫1𝐺) ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}) → (∫1𝐺) ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
62, 4, 5sylancr 589 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1𝐺r𝐹) → (∫1𝐺) ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
71itg2val 24323 . . 3 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
873ad2ant1 1129 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1𝐺r𝐹) → (∫2𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}, ℝ*, < ))
96, 8breqtrrd 5087 1 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺 ∈ dom ∫1𝐺r𝐹) → (∫1𝐺) ≤ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  {cab 2799  wrex 3139  wss 3936   class class class wbr 5059  dom cdm 5550  wf 6346  cfv 6350  (class class class)co 7150  r cofr 7402  supcsup 8898  cr 10530  0cc0 10531  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  [,]cicc 12735  1citg1 24210  2citg2 24211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xadd 12502  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-xmet 20532  df-met 20533  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215  df-itg2 24216
This theorem is referenced by:  itg2ge0  24330  itg2itg1  24331  itg2le  24334  itg2seq  24337  itg2uba  24338  itg2mulclem  24341  itg2splitlem  24343  itg2monolem1  24345  itg2i1fseq3  24352  itg2addlem  24353
  Copyright terms: Public domain W3C validator