MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2uba Structured version   Visualization version   GIF version

Theorem itg2uba 23729
Description: Approximate version of itg2ub 23719. If 𝐹 approximately dominates 𝐺, then 1𝐺 ≤ ∫2𝐹. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2uba.1 (𝜑𝐹:ℝ⟶(0[,]+∞))
itg2uba.2 (𝜑𝐺 ∈ dom ∫1)
itg2uba.3 (𝜑𝐴 ⊆ ℝ)
itg2uba.4 (𝜑 → (vol*‘𝐴) = 0)
itg2uba.5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
Assertion
Ref Expression
itg2uba (𝜑 → (∫1𝐺) ≤ (∫2𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem itg2uba
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itg2uba.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
2 itg1cl 23671 . . . 4 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℝ)
31, 2syl 17 . . 3 (𝜑 → (∫1𝐺) ∈ ℝ)
43rexrd 10301 . 2 (𝜑 → (∫1𝐺) ∈ ℝ*)
5 itg2uba.3 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
6 itg2uba.4 . . . . . . 7 (𝜑 → (vol*‘𝐴) = 0)
7 nulmbl 23523 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol)
85, 6, 7syl2anc 696 . . . . . 6 (𝜑𝐴 ∈ dom vol)
9 cmmbl 23522 . . . . . 6 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)
108, 9syl 17 . . . . 5 (𝜑 → (ℝ ∖ 𝐴) ∈ dom vol)
11 ifnot 4277 . . . . . . . 8 if(¬ 𝑥𝐴, (𝐺𝑥), 0) = if(𝑥𝐴, 0, (𝐺𝑥))
12 eldif 3725 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
1312baibr 983 . . . . . . . . 9 (𝑥 ∈ ℝ → (¬ 𝑥𝐴𝑥 ∈ (ℝ ∖ 𝐴)))
1413ifbid 4252 . . . . . . . 8 (𝑥 ∈ ℝ → if(¬ 𝑥𝐴, (𝐺𝑥), 0) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1511, 14syl5eqr 2808 . . . . . . 7 (𝑥 ∈ ℝ → if(𝑥𝐴, 0, (𝐺𝑥)) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1615mpteq2ia 4892 . . . . . 6 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1716i1fres 23691 . . . . 5 ((𝐺 ∈ dom ∫1 ∧ (ℝ ∖ 𝐴) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1)
181, 10, 17syl2anc 696 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1)
19 itg1cl 23671 . . . 4 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ)
2018, 19syl 17 . . 3 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ)
2120rexrd 10301 . 2 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ*)
22 itg2uba.1 . . 3 (𝜑𝐹:ℝ⟶(0[,]+∞))
23 itg2cl 23718 . . 3 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
2422, 23syl 17 . 2 (𝜑 → (∫2𝐹) ∈ ℝ*)
25 i1ff 23662 . . . . . . 7 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
261, 25syl 17 . . . . . 6 (𝜑𝐺:ℝ⟶ℝ)
27 eldifi 3875 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) → 𝑦 ∈ ℝ)
28 ffvelrn 6521 . . . . . 6 ((𝐺:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐺𝑦) ∈ ℝ)
2926, 27, 28syl2an 495 . . . . 5 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ∈ ℝ)
3029leidd 10806 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ≤ (𝐺𝑦))
31 eldif 3725 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦𝐴))
32 eleq1w 2822 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
33 fveq2 6353 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
3432, 33ifbieq2d 4255 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥𝐴, 0, (𝐺𝑥)) = if(𝑦𝐴, 0, (𝐺𝑦)))
35 eqid 2760 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))
36 c0ex 10246 . . . . . . . . 9 0 ∈ V
37 fvex 6363 . . . . . . . . 9 (𝐺𝑦) ∈ V
3836, 37ifex 4300 . . . . . . . 8 if(𝑦𝐴, 0, (𝐺𝑦)) ∈ V
3934, 35, 38fvmpt 6445 . . . . . . 7 (𝑦 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = if(𝑦𝐴, 0, (𝐺𝑦)))
40 iffalse 4239 . . . . . . 7 𝑦𝐴 → if(𝑦𝐴, 0, (𝐺𝑦)) = (𝐺𝑦))
4139, 40sylan9eq 2814 . . . . . 6 ((𝑦 ∈ ℝ ∧ ¬ 𝑦𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4231, 41sylbi 207 . . . . 5 (𝑦 ∈ (ℝ ∖ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4342adantl 473 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4430, 43breqtrrd 4832 . . 3 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ≤ ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦))
451, 5, 6, 18, 44itg1lea 23698 . 2 (𝜑 → (∫1𝐺) ≤ (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))))
46 iftrue 4236 . . . . . . . 8 (𝑥𝐴 → if(𝑥𝐴, 0, (𝐺𝑥)) = 0)
4746adantl 473 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) = 0)
4822ffvelrnda 6523 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
49 elxrge0 12494 . . . . . . . . . 10 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
5048, 49sylib 208 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
5150simprd 482 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
5251adantr 472 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 0 ≤ (𝐹𝑥))
5347, 52eqbrtrd 4826 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
54 iffalse 4239 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, 0, (𝐺𝑥)) = (𝐺𝑥))
5554adantl 473 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) = (𝐺𝑥))
56 itg2uba.5 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
5712, 56sylan2br 494 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
5857anassrs 683 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → (𝐺𝑥) ≤ (𝐹𝑥))
5955, 58eqbrtrd 4826 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
6053, 59pm2.61dan 867 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
6160ralrimiva 3104 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
62 reex 10239 . . . . . 6 ℝ ∈ V
6362a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
64 fvex 6363 . . . . . . 7 (𝐺𝑥) ∈ V
6536, 64ifex 4300 . . . . . 6 if(𝑥𝐴, 0, (𝐺𝑥)) ∈ V
6665a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 0, (𝐺𝑥)) ∈ V)
67 fvexd 6365 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ V)
68 eqidd 2761 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))))
6922feqmptd 6412 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
7063, 66, 67, 68, 69ofrfval2 7081 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘𝑟𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥)))
7161, 70mpbird 247 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘𝑟𝐹)
72 itg2ub 23719 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘𝑟𝐹) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ≤ (∫2𝐹))
7322, 18, 71, 72syl3anc 1477 . 2 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ≤ (∫2𝐹))
744, 21, 24, 45, 73xrletrd 12206 1 (𝜑 → (∫1𝐺) ≤ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  cdif 3712  wss 3715  ifcif 4230   class class class wbr 4804  cmpt 4881  dom cdm 5266  wf 6045  cfv 6049  (class class class)co 6814  𝑟 cofr 7062  cr 10147  0cc0 10148  +∞cpnf 10283  *cxr 10285  cle 10287  [,]cicc 12391  vol*covol 23451  volcvol 23452  1citg1 23603  2citg2 23604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-ofr 7064  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636  df-rest 16305  df-topgen 16326  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-top 20921  df-topon 20938  df-bases 20972  df-cmp 21412  df-ovol 23453  df-vol 23454  df-mbf 23607  df-itg1 23608  df-itg2 23609
This theorem is referenced by:  itg2lea  23730  itg2split  23735
  Copyright terms: Public domain W3C validator