Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgaddnc Structured version   Visualization version   GIF version

Theorem itgaddnc 34944
Description: Choice-free analogue of itgadd 24417. (Contributed by Brendan Leahy, 11-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
ibladdnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
ibladdnc.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
ibladdnc.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
ibladdnc.m (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
Assertion
Ref Expression
itgaddnc (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgaddnc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ibladdnc.2 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 24360 . . . . . . . . 9 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 ibladdnc.1 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 24229 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 ibladdnc.4 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 iblmbf 24360 . . . . . . . . 9 ((𝑥𝐴𝐶) ∈ 𝐿1 → (𝑥𝐴𝐶) ∈ MblFn)
86, 7syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
9 ibladdnc.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝑉)
108, 9mbfmptcl 24229 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
115, 10readdd 14565 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 + 𝐶)) = ((ℜ‘𝐵) + (ℜ‘𝐶)))
1211itgeq2dv 24374 . . . . 5 (𝜑 → ∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 = ∫𝐴((ℜ‘𝐵) + (ℜ‘𝐶)) d𝑥)
135recld 14545 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
145iblcn 24391 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
151, 14mpbid 234 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1615simpld 497 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
1710recld 14545 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
1810iblcn 24391 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1)))
196, 18mpbid 234 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1))
2019simpld 497 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1)
215, 10addcld 10652 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℂ)
22 eqidd 2820 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) = (𝑥𝐴 ↦ (𝐵 + 𝐶)))
23 ref 14463 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
2423a1i 11 . . . . . . . . . 10 (𝜑 → ℜ:ℂ⟶ℝ)
2524feqmptd 6726 . . . . . . . . 9 (𝜑 → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦)))
26 fveq2 6663 . . . . . . . . 9 (𝑦 = (𝐵 + 𝐶) → (ℜ‘𝑦) = (ℜ‘(𝐵 + 𝐶)))
2721, 22, 25, 26fmptco 6884 . . . . . . . 8 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ (ℜ‘(𝐵 + 𝐶))))
2811mpteq2dva 5152 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))))
2927, 28eqtrd 2854 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))))
30 ibladdnc.m . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
3121fmpttd 6872 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
32 ismbfcn 24222 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)))
3331, 32syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)))
3430, 33mpbid 234 . . . . . . . 8 (𝜑 → ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn))
3534simpld 497 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)
3629, 35eqeltrrd 2912 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))) ∈ MblFn)
3713, 16, 17, 20, 36, 13, 17itgaddnclem2 34943 . . . . 5 (𝜑 → ∫𝐴((ℜ‘𝐵) + (ℜ‘𝐶)) d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥))
3812, 37eqtrd 2854 . . . 4 (𝜑 → ∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥))
395, 10imaddd 14566 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘(𝐵 + 𝐶)) = ((ℑ‘𝐵) + (ℑ‘𝐶)))
4039itgeq2dv 24374 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥 = ∫𝐴((ℑ‘𝐵) + (ℑ‘𝐶)) d𝑥)
415imcld 14546 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
4215simprd 498 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
4310imcld 14546 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
4419simprd 498 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1)
45 imf 14464 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
4645a1i 11 . . . . . . . . . . . 12 (𝜑 → ℑ:ℂ⟶ℝ)
4746feqmptd 6726 . . . . . . . . . . 11 (𝜑 → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦)))
48 fveq2 6663 . . . . . . . . . . 11 (𝑦 = (𝐵 + 𝐶) → (ℑ‘𝑦) = (ℑ‘(𝐵 + 𝐶)))
4921, 22, 47, 48fmptco 6884 . . . . . . . . . 10 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ (ℑ‘(𝐵 + 𝐶))))
5039mpteq2dva 5152 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))))
5149, 50eqtrd 2854 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))))
5234simprd 498 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)
5351, 52eqeltrrd 2912 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))) ∈ MblFn)
5441, 42, 43, 44, 53, 41, 43itgaddnclem2 34943 . . . . . . 7 (𝜑 → ∫𝐴((ℑ‘𝐵) + (ℑ‘𝐶)) d𝑥 = (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥))
5540, 54eqtrd 2854 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥 = (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥))
5655oveq2d 7164 . . . . 5 (𝜑 → (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥) = (i · (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥)))
57 ax-icn 10588 . . . . . . 7 i ∈ ℂ
5857a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
5941, 42itgcl 24376 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
6043, 44itgcl 24376 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘𝐶) d𝑥 ∈ ℂ)
6158, 59, 60adddid 10657 . . . . 5 (𝜑 → (i · (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥)) = ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
6256, 61eqtrd 2854 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥) = ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
6338, 62oveq12d 7166 . . 3 (𝜑 → (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)) = ((∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥) + ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
6413, 16itgcl 24376 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
6517, 20itgcl 24376 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐶) d𝑥 ∈ ℂ)
66 mulcl 10613 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
6757, 59, 66sylancr 589 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
68 mulcl 10613 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐶) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐶) d𝑥) ∈ ℂ)
6957, 60, 68sylancr 589 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐶) d𝑥) ∈ ℂ)
7064, 65, 67, 69add4d 10860 . . 3 (𝜑 → ((∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥) + ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥))) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
7163, 70eqtrd 2854 . 2 (𝜑 → (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
72 ovexd 7183 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ V)
734, 1, 9, 6, 30ibladdnc 34941 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
7472, 73itgcnval 24392 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)))
754, 1itgcnval 24392 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
769, 6itgcnval 24392 . . 3 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
7775, 76oveq12d 7166 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
7871, 74, 773eqtr4d 2864 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  Vcvv 3493  cmpt 5137  ccom 5552  wf 6344  cfv 6348  (class class class)co 7148  cc 10527  cr 10528  ici 10531   + caddc 10532   · cmul 10534  cre 14448  cim 14449  MblFncmbf 24207  𝐿1cibl 24210  citg 24211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-ofr 7402  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-top 21494  df-topon 21511  df-bases 21546  df-cmp 21987  df-ovol 24057  df-vol 24058  df-mbf 24212  df-itg1 24213  df-itg2 24214  df-ibl 24215  df-itg 24216  df-0p 24263
This theorem is referenced by:  itgsubnc  34946  itgmulc2nc  34952  ftc1cnnclem  34957
  Copyright terms: Public domain W3C validator