MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgle Structured version   Visualization version   GIF version

Theorem itgle 24412
Description: Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itgle.1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgle.2 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
itgle.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgle.4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
itgle.5 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
itgle (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgle
StepHypRef Expression
1 itgle.1 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 itgle.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32iblrelem 24393 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)))
41, 3mpbid 234 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))
54simp2d 1139 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
6 itgle.2 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 itgle.4 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
87iblrelem 24393 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)))
96, 8mpbid 234 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ))
109simp3d 1140 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)
119simp2d 1139 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)
124simp3d 1140 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)
132ad2ant2r 745 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
1413rexrd 10693 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ*)
15 simprr 771 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵)
16 elxrge0 12848 . . . . . . 7 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
1714, 15, 16sylanbrc 585 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ (0[,]+∞))
18 0e0iccpnf 12850 . . . . . . 7 0 ∈ (0[,]+∞)
1918a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 0 ∈ (0[,]+∞))
2017, 19ifclda 4503 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,]+∞))
2120fmpttd 6881 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞))
227ad2ant2r 745 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ)
2322rexrd 10693 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
24 simprr 771 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶)
25 elxrge0 12848 . . . . . . 7 (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶))
2623, 24, 25sylanbrc 585 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ (0[,]+∞))
2718a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 0 ∈ (0[,]+∞))
2826, 27ifclda 4503 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,]+∞))
2928fmpttd 6881 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞))
30 0re 10645 . . . . . . . . . . . 12 0 ∈ ℝ
31 max1 12581 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
3230, 7, 31sylancr 589 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
33 ifcl 4513 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
347, 30, 33sylancl 588 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
35 itgle.5 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝐶)
36 max2 12583 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
3730, 7, 36sylancr 589 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
382, 7, 34, 35, 37letrd 10799 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))
39 maxle 12587 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))))
4030, 2, 34, 39mp3an2i 1462 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))))
4132, 38, 40mpbir2and 711 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0))
42 iftrue 4475 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0))
4342adantl 484 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0))
44 iftrue 4475 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0))
4544adantl 484 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0))
4641, 43, 453brtr4d 5100 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
4746ex 415 . . . . . . . 8 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)))
48 0le0 11741 . . . . . . . . . 10 0 ≤ 0
4948a1i 11 . . . . . . . . 9 𝑥𝐴 → 0 ≤ 0)
50 iffalse 4478 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = 0)
51 iffalse 4478 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = 0)
5249, 50, 513brtr4d 5100 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
5347, 52pm2.61d1 182 . . . . . . 7 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
54 ifan 4520 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)
55 ifan 4520 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)
5653, 54, 553brtr4g 5102 . . . . . 6 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
5756ralrimivw 3185 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
58 reex 10630 . . . . . . 7 ℝ ∈ V
5958a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
60 eqidd 2824 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)))
61 eqidd 2824 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
6259, 20, 28, 60, 61ofrfval2 7429 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
6357, 62mpbird 259 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
64 itg2le 24342 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
6521, 29, 63, 64syl3anc 1367 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
667renegcld 11069 . . . . . . . . 9 ((𝜑𝑥𝐴) → -𝐶 ∈ ℝ)
6766ad2ant2r 745 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ)
6867rexrd 10693 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ*)
69 simprr 771 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → 0 ≤ -𝐶)
70 elxrge0 12848 . . . . . . 7 (-𝐶 ∈ (0[,]+∞) ↔ (-𝐶 ∈ ℝ* ∧ 0 ≤ -𝐶))
7168, 69, 70sylanbrc 585 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ (0[,]+∞))
7218a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → 0 ∈ (0[,]+∞))
7371, 72ifclda 4503 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ∈ (0[,]+∞))
7473fmpttd 6881 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞))
752renegcld 11069 . . . . . . . . 9 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
7675ad2ant2r 745 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ)
7776rexrd 10693 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ*)
78 simprr 771 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ -𝐵)
79 elxrge0 12848 . . . . . . 7 (-𝐵 ∈ (0[,]+∞) ↔ (-𝐵 ∈ ℝ* ∧ 0 ≤ -𝐵))
8077, 78, 79sylanbrc 585 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ (0[,]+∞))
8118a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → 0 ∈ (0[,]+∞))
8280, 81ifclda 4503 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) ∈ (0[,]+∞))
8382fmpttd 6881 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞))
84 max1 12581 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
8530, 75, 84sylancr 589 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
86 ifcl 4513 . . . . . . . . . . . . 13 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
8775, 30, 86sylancl 588 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
882, 7lenegd 11221 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐶 ↔ -𝐶 ≤ -𝐵))
8935, 88mpbid 234 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -𝐶 ≤ -𝐵)
90 max2 12583 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9130, 75, 90sylancr 589 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9266, 75, 87, 89, 91letrd 10799 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))
93 maxle 12587 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝐶 ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))))
9430, 66, 87, 93mp3an2i 1462 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))))
9585, 92, 94mpbir2and 711 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0))
96 iftrue 4475 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0))
9796adantl 484 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0))
98 iftrue 4475 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0))
9998adantl 484 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0))
10095, 97, 993brtr4d 5100 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
101100ex 415 . . . . . . . 8 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)))
102 iffalse 4478 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = 0)
103 iffalse 4478 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = 0)
10449, 102, 1033brtr4d 5100 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
105101, 104pm2.61d1 182 . . . . . . 7 (𝜑 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
106 ifan 4520 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) = if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0)
107 ifan 4520 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)
108105, 106, 1073brtr4g 5102 . . . . . 6 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
109108ralrimivw 3185 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
110 eqidd 2824 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))
111 eqidd 2824 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
11259, 73, 82, 110, 111ofrfval2 7429 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
113109, 112mpbird 259 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
114 itg2le 24342 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))
11574, 83, 113, 114syl3anc 1367 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))
1165, 10, 11, 12, 65, 115le2subd 11262 . 2 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) ≤ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))))
1172, 1itgrevallem1 24397 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))))
1187, 6itgrevallem1 24397 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))))
119116, 117, 1183brtr4d 5100 1 (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  ifcif 4469   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  r cofr 7410  cr 10538  0cc0 10539  +∞cpnf 10674  *cxr 10676  cle 10678  cmin 10872  -cneg 10873  [,]cicc 12744  MblFncmbf 24217  2citg2 24219  𝐿1cibl 24220  citg 24221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-xmet 20540  df-met 20541  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223  df-itg2 24224  df-ibl 24225  df-itg 24226  df-0p 24273
This theorem is referenced by:  itgge0  24413  itgless  24419  itgabs  24437  itgulm  24998  itgabsnc  34963  wallispilem1  42357  fourierdlem47  42445  fourierdlem87  42485  etransclem23  42549
  Copyright terms: Public domain W3C validator