Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgocn Structured version   Visualization version   GIF version

Theorem itgocn 39771
Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
itgocn (IntgOver‘𝑆) ⊆ ℂ

Proof of Theorem itgocn
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itgo 39766 . . . . 5 IntgOver = (𝑎 ∈ 𝒫 ℂ ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ (Poly‘𝑎)((𝑐𝑏) = 0 ∧ ((coeff‘𝑐)‘(deg‘𝑐)) = 1)})
21dmmptss 6097 . . . 4 dom IntgOver ⊆ 𝒫 ℂ
32sseli 3965 . . 3 (𝑆 ∈ dom IntgOver → 𝑆 ∈ 𝒫 ℂ)
4 cnex 10620 . . . . 5 ℂ ∈ V
54elpw2 5250 . . . 4 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
6 itgoval 39768 . . . . 5 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
7 ssrab2 4058 . . . . 5 {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ ℂ
86, 7eqsstrdi 4023 . . . 4 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) ⊆ ℂ)
95, 8sylbi 219 . . 3 (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) ⊆ ℂ)
103, 9syl 17 . 2 (𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ)
11 ndmfv 6702 . . 3 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) = ∅)
12 0ss 4352 . . 3 ∅ ⊆ ℂ
1311, 12eqsstrdi 4023 . 2 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ)
1410, 13pm2.61i 184 1 (IntgOver‘𝑆) ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1537  wcel 2114  wrex 3141  {crab 3144  wss 3938  c0 4293  𝒫 cpw 4541  dom cdm 5557  cfv 6357  cc 10537  0cc0 10539  1c1 10540  Polycply 24776  coeffccoe 24778  degcdgr 24779  IntgOvercitgo 39764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-cnex 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fv 6365  df-itgo 39766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator