Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgocn Structured version   Visualization version   GIF version

Theorem itgocn 36553
Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
itgocn (IntgOver‘𝑆) ⊆ ℂ

Proof of Theorem itgocn
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itgo 36548 . . . . 5 IntgOver = (𝑎 ∈ 𝒫 ℂ ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ (Poly‘𝑎)((𝑐𝑏) = 0 ∧ ((coeff‘𝑐)‘(deg‘𝑐)) = 1)})
21dmmptss 5531 . . . 4 dom IntgOver ⊆ 𝒫 ℂ
32sseli 3560 . . 3 (𝑆 ∈ dom IntgOver → 𝑆 ∈ 𝒫 ℂ)
4 cnex 9870 . . . . 5 ℂ ∈ V
54elpw2 4747 . . . 4 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
6 itgoval 36550 . . . . 5 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
7 ssrab2 3646 . . . . 5 {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ ℂ
86, 7syl6eqss 3614 . . . 4 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) ⊆ ℂ)
95, 8sylbi 205 . . 3 (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) ⊆ ℂ)
103, 9syl 17 . 2 (𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ)
11 ndmfv 6110 . . 3 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) = ∅)
12 0ss 3920 . . 3 ∅ ⊆ ℂ
1311, 12syl6eqss 3614 . 2 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ)
1410, 13pm2.61i 174 1 (IntgOver‘𝑆) ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 382   = wceq 1474  wcel 1976  wrex 2893  {crab 2896  wss 3536  c0 3870  𝒫 cpw 4104  dom cdm 5025  cfv 5787  cc 9787  0cc0 9789  1c1 9790  Polycply 23658  coeffccoe 23660  degcdgr 23661  IntgOvercitgo 36546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-cnex 9845
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-sbc 3399  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fv 5795  df-itgo 36548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator