Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgocn Structured version   Visualization version   GIF version

Theorem itgocn 38051
Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
itgocn (IntgOver‘𝑆) ⊆ ℂ

Proof of Theorem itgocn
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itgo 38046 . . . . 5 IntgOver = (𝑎 ∈ 𝒫 ℂ ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ (Poly‘𝑎)((𝑐𝑏) = 0 ∧ ((coeff‘𝑐)‘(deg‘𝑐)) = 1)})
21dmmptss 5669 . . . 4 dom IntgOver ⊆ 𝒫 ℂ
32sseli 3632 . . 3 (𝑆 ∈ dom IntgOver → 𝑆 ∈ 𝒫 ℂ)
4 cnex 10055 . . . . 5 ℂ ∈ V
54elpw2 4858 . . . 4 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
6 itgoval 38048 . . . . 5 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
7 ssrab2 3720 . . . . 5 {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ ℂ
86, 7syl6eqss 3688 . . . 4 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) ⊆ ℂ)
95, 8sylbi 207 . . 3 (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) ⊆ ℂ)
103, 9syl 17 . 2 (𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ)
11 ndmfv 6256 . . 3 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) = ∅)
12 0ss 4005 . . 3 ∅ ⊆ ℂ
1311, 12syl6eqss 3688 . 2 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ)
1410, 13pm2.61i 176 1 (IntgOver‘𝑆) ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1523  wcel 2030  wrex 2942  {crab 2945  wss 3607  c0 3948  𝒫 cpw 4191  dom cdm 5143  cfv 5926  cc 9972  0cc0 9974  1c1 9975  Polycply 23985  coeffccoe 23987  degcdgr 23988  IntgOvercitgo 38044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-cnex 10030
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fv 5934  df-itgo 38046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator