Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsbtaddcnst Structured version   Visualization version   GIF version

Theorem itgsbtaddcnst 42143
Description: Integral substitution, adding a constant to the function's argument. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsbtaddcnst.a (𝜑𝐴 ∈ ℝ)
itgsbtaddcnst.b (𝜑𝐵 ∈ ℝ)
itgsbtaddcnst.aleb (𝜑𝐴𝐵)
itgsbtaddcnst.x (𝜑𝑋 ∈ ℝ)
itgsbtaddcnst.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
itgsbtaddcnst (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
Distinct variable groups:   𝐴,𝑠,𝑡   𝐵,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡   𝜑,𝑠,𝑡

Proof of Theorem itgsbtaddcnst
StepHypRef Expression
1 itgsbtaddcnst.a . . 3 (𝜑𝐴 ∈ ℝ)
2 itgsbtaddcnst.b . . 3 (𝜑𝐵 ∈ ℝ)
3 itgsbtaddcnst.aleb . . 3 (𝜑𝐴𝐵)
41, 2iccssred 41656 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
54sselda 3964 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ)
65recnd 10657 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ)
7 itgsbtaddcnst.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
87recnd 10657 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
98adantr 481 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℂ)
106, 9negsubd 10991 . . . . . 6 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 + -𝑋) = (𝑡𝑋))
1110eqcomd 2824 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) = (𝑡 + -𝑋))
1211mpteq2dva 5152 . . . 4 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)))
131adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
147adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
1513, 14resubcld 11056 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴𝑋) ∈ ℝ)
162adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
1716, 14resubcld 11056 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐵𝑋) ∈ ℝ)
185, 14resubcld 11056 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ℝ)
19 simpr 485 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
201, 2jca 512 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2120adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
22 elicc2 12789 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵)))
2321, 22syl 17 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵)))
2419, 23mpbid 233 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵))
2524simp2d 1135 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐴𝑡)
2613, 5, 14, 25lesub1dd 11244 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴𝑋) ≤ (𝑡𝑋))
2724simp3d 1136 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡𝐵)
285, 16, 14, 27lesub1dd 11244 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ≤ (𝐵𝑋))
2915, 17, 18, 26, 28eliccd 41655 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ((𝐴𝑋)[,](𝐵𝑋)))
3029fmpttd 6871 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋)))
3112, 30feq1dd 41299 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋)))
321, 7resubcld 11056 . . . . . . . 8 (𝜑 → (𝐴𝑋) ∈ ℝ)
332, 7resubcld 11056 . . . . . . . 8 (𝜑 → (𝐵𝑋) ∈ ℝ)
3432, 33iccssred 41656 . . . . . . 7 (𝜑 → ((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℝ)
35 ax-resscn 10582 . . . . . . 7 ℝ ⊆ ℂ
3634, 35sstrdi 3976 . . . . . 6 (𝜑 → ((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℂ)
374, 35sstrdi 3976 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
3837resmptd 5901 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)))
39 ssid 3986 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
40 cncfmptid 23447 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
4139, 39, 40mp2an 688 . . . . . . . . . . . 12 (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)
4241a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
4339a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ℂ ⊆ ℂ)
44 id 22 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
4543, 44, 43constcncfg 42030 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ))
4642, 45subcncf 42028 . . . . . . . . . 10 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
478, 46syl 17 . . . . . . . . 9 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
48 rescncf 23432 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
4937, 47, 48sylc 65 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5038, 49eqeltrrd 2911 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5112, 50eqeltrrd 2911 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
52 cncffvrn 23433 . . . . . 6 ((((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋))))
5336, 51, 52syl2anc 584 . . . . 5 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋))))
5431, 53mpbird 258 . . . 4 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))))
5512, 54eqeltrd 2910 . . 3 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))))
56 eqid 2818 . . . . 5 (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠))
578adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ℂ) → 𝑋 ∈ ℂ)
58 simpr 485 . . . . . . . 8 ((𝜑𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
5957, 58addcomd 10830 . . . . . . 7 ((𝜑𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋))
6059mpteq2dva 5152 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)))
61 eqid 2818 . . . . . . . 8 (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))
6261addccncf 23451 . . . . . . 7 (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
638, 62syl 17 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
6460, 63eqeltrd 2910 . . . . 5 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ))
651adantr 481 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
662adantr 481 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐵 ∈ ℝ)
677adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑋 ∈ ℝ)
6834sselda 3964 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ∈ ℝ)
6967, 68readdcld 10658 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ∈ ℝ)
70 simpr 485 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
7132adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
7233adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
73 elicc2 12789 . . . . . . . . . 10 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋))))
7471, 72, 73syl2anc 584 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋))))
7570, 74mpbid 233 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋)))
7675simp2d 1135 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ≤ 𝑠)
7765, 67, 68lesubadd2d 11227 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝐴𝑋) ≤ 𝑠𝐴 ≤ (𝑋 + 𝑠)))
7876, 77mpbid 233 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑠))
7975simp3d 1136 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ≤ (𝐵𝑋))
8067, 68, 66leaddsub2d 11230 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝑋 + 𝑠) ≤ 𝐵𝑠 ≤ (𝐵𝑋)))
8179, 80mpbird 258 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ≤ 𝐵)
8265, 66, 69, 78, 81eliccd 41655 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ∈ (𝐴[,]𝐵))
8356, 64, 36, 37, 82cncfmptssg 42029 . . . 4 (𝜑 → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝑋 + 𝑠)) ∈ (((𝐴𝑋)[,](𝐵𝑋))–cn→(𝐴[,]𝐵)))
84 itgsbtaddcnst.f . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
8583, 84cncfcompt 42042 . . 3 (𝜑 → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝐴𝑋)[,](𝐵𝑋))–cn→ℂ))
86 ax-1cn 10583 . . . . . 6 1 ∈ ℂ
87 ioosscn 41645 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
88 cncfmptc 23446 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
8986, 87, 39, 88mp3an 1452 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ)
9089a1i 11 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
91 fconstmpt 5607 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)
92 ioombl 24093 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
9392a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
94 volioo 24097 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
951, 2, 3, 94syl3anc 1363 . . . . . . 7 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
962, 1resubcld 11056 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
9795, 96eqeltrd 2910 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
98 1cnd 10624 . . . . . 6 (𝜑 → 1 ∈ ℂ)
99 iblconst 24345 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10093, 97, 98, 99syl3anc 1363 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10191, 100eqeltrrid 2915 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
10290, 101elind 4168 . . 3 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
10335a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
10418recnd 10657 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ℂ)
105 eqid 2818 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
106105tgioo2 23338 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
107 iccntr 23356 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
10820, 107syl 17 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
109103, 4, 104, 106, 105, 108dvmptntr 24495 . . . 4 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋))) = (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑋))))
110 reelprrecn 10617 . . . . . 6 ℝ ∈ {ℝ, ℂ}
111110a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
112 ioossre 12786 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
113112sseli 3960 . . . . . . 7 (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ ℝ)
114113adantl 482 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℝ)
115114recnd 10657 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℂ)
116 1cnd 10624 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
117103sselda 3964 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
118 1cnd 10624 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
119111dvmptid 24481 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
120112a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
121 iooretop 23301 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
122121a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
123111, 117, 118, 119, 120, 106, 105, 122dvmptres 24487 . . . . 5 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑡)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
1248adantr 481 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ)
125 0cnd 10622 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ)
1268adantr 481 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑋 ∈ ℂ)
127 0cnd 10622 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 0 ∈ ℂ)
128111, 8dvmptc 24482 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑋)) = (𝑡 ∈ ℝ ↦ 0))
129111, 126, 127, 128, 120, 106, 105, 122dvmptres 24487 . . . . 5 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 0))
130111, 115, 116, 123, 124, 125, 129dvmptsub 24491 . . . 4 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)))
131116subid1d 10974 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (1 − 0) = 1)
132131mpteq2dva 5152 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
133109, 130, 1323eqtrd 2857 . . 3 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
134 oveq2 7153 . . . 4 (𝑠 = (𝑡𝑋) → (𝑋 + 𝑠) = (𝑋 + (𝑡𝑋)))
135134fveq2d 6667 . . 3 (𝑠 = (𝑡𝑋) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑡𝑋))))
136 oveq1 7152 . . 3 (𝑡 = 𝐴 → (𝑡𝑋) = (𝐴𝑋))
137 oveq1 7152 . . 3 (𝑡 = 𝐵 → (𝑡𝑋) = (𝐵𝑋))
1381, 2, 3, 55, 85, 102, 133, 135, 136, 137, 32, 33itgsubsticc 42137 . 2 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵]((𝐹‘(𝑋 + (𝑡𝑋))) · 1) d𝑡)
139124, 115pncan3d 10988 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝑋 + (𝑡𝑋)) = 𝑡)
140139fveq2d 6667 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + (𝑡𝑋))) = (𝐹𝑡))
141140oveq1d 7160 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡𝑋))) · 1) = ((𝐹𝑡) · 1))
142 cncff 23428 . . . . . . . 8 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
14384, 142syl 17 . . . . . . 7 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
144143adantr 481 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
145 ioossicc 12810 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
146145sseli 3960 . . . . . . 7 (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ (𝐴[,]𝐵))
147146adantl 482 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
148144, 147ffvelrnd 6844 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ℂ)
149148mulid1d 10646 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹𝑡) · 1) = (𝐹𝑡))
150141, 149eqtrd 2853 . . 3 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡𝑋))) · 1) = (𝐹𝑡))
1513, 150ditgeq3d 42125 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑋 + (𝑡𝑋))) · 1) d𝑡 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
152138, 151eqtrd 2853 1 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wss 3933  {csn 4557  {cpr 4559   class class class wbr 5057  cmpt 5137   × cxp 5546  dom cdm 5548  ran crn 5549  cres 5550  wf 6344  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  cle 10664  cmin 10858  -cneg 10859  (,)cioo 12726  [,]cicc 12729  TopOpenctopn 16683  topGenctg 16699  fldccnfld 20473  intcnt 21553  cnccncf 23411  volcvol 23991  𝐿1cibl 24145  cdit 24371   D cdv 24388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-symdif 4216  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-omul 8096  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-ovol 23992  df-vol 23993  df-mbf 24147  df-itg1 24148  df-itg2 24149  df-ibl 24150  df-itg 24151  df-0p 24198  df-ditg 24372  df-limc 24391  df-dv 24392
This theorem is referenced by:  fourierdlem82  42350
  Copyright terms: Public domain W3C validator