Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsincmulx Structured version   Visualization version   GIF version

Theorem itgsincmulx 39513
Description: Exercise: the integral of 𝑥 ↦ sin𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsincmulx.a (𝜑𝐴 ∈ ℂ)
itgsincmulx.an0 (𝜑𝐴 ≠ 0)
itgsincmulx.b (𝜑𝐵 ∈ ℝ)
itgsincmulx.c (𝜑𝐶 ∈ ℝ)
itgsincmulx.blec (𝜑𝐵𝐶)
Assertion
Ref Expression
itgsincmulx (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem itgsincmulx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . . . . 7 (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))
2 itgsincmulx.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
32adantr 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 477 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
53, 4mulcld 10007 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
65coscld 14789 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
76negcld 10326 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → -(cos‘(𝐴 · 𝑦)) ∈ ℂ)
8 itgsincmulx.an0 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
98adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → 𝐴 ≠ 0)
107, 3, 9divcld 10748 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
11 cnelprrecn 9976 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
1211a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ {ℝ, ℂ})
135sincld 14788 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
1413negcld 10326 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → -(sin‘(𝐴 · 𝑦)) ∈ ℂ)
153, 14mulcld 10007 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐴 · -(sin‘(𝐴 · 𝑦))) ∈ ℂ)
1615negcld 10326 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → -(𝐴 · -(sin‘(𝐴 · 𝑦))) ∈ ℂ)
17 dvcosax 39464 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
182, 17syl 17 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
1912, 6, 15, 18dvmptneg 23642 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ -(cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ -(𝐴 · -(sin‘(𝐴 · 𝑦)))))
2012, 7, 16, 19, 2, 8dvmptdivc 23641 . . . . . . . 8 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℂ ↦ (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴)))
2115, 3, 9divnegd 10761 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴))
2221eqcomd 2627 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴))
2314, 3, 9divcan3d 10753 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → ((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = -(sin‘(𝐴 · 𝑦)))
2423negeqd 10222 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = --(sin‘(𝐴 · 𝑦)))
2513negnegd 10330 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → --(sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑦)))
2622, 24, 253eqtrd 2659 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = (sin‘(𝐴 · 𝑦)))
2726mpteq2dva 4706 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴)) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
2820, 27eqtrd 2655 . . . . . . 7 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
29 itgsincmulx.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
30 itgsincmulx.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
311, 10, 28, 13, 29, 30dvmptresicc 39457 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))))
3231fveq1d 6152 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥))
3332adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥))
34 eqidd 2622 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))))
35 oveq2 6615 . . . . . . 7 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
3635fveq2d 6154 . . . . . 6 (𝑦 = 𝑥 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
3736adantl 482 . . . . 5 (((𝜑𝑥 ∈ (𝐵(,)𝐶)) ∧ 𝑦 = 𝑥) → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
38 simpr 477 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐵(,)𝐶))
392adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
40 ioosscn 39145 . . . . . . . 8 (𝐵(,)𝐶) ⊆ ℂ
4140, 38sseldi 3582 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ℂ)
4239, 41mulcld 10007 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝐴 · 𝑥) ∈ ℂ)
4342sincld 14788 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (sin‘(𝐴 · 𝑥)) ∈ ℂ)
4434, 37, 38, 43fvmptd 6247 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥) = (sin‘(𝐴 · 𝑥)))
4533, 44eqtr2d 2656 . . 3 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (sin‘(𝐴 · 𝑥)) = ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥))
4645itgeq2dv 23461 . 2 (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥)
47 itgsincmulx.blec . . 3 (𝜑𝐵𝐶)
48 sincn 24109 . . . . . 6 sin ∈ (ℂ–cn→ℂ)
4948a1i 11 . . . . 5 (𝜑 → sin ∈ (ℂ–cn→ℂ))
5040a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐶) ⊆ ℂ)
51 ssid 3605 . . . . . . . 8 ℂ ⊆ ℂ
5251a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
5350, 2, 52constcncfg 39405 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝐴) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5450, 52idcncfg 39406 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝑦) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5553, 54mulcncf 23128 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5649, 55cncfmpt1f 22629 . . . 4 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5731, 56eqeltrd 2698 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
58 ioossicc 12204 . . . . . 6 (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶)
5958a1i 11 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶))
60 ioombl 23246 . . . . . 6 (𝐵(,)𝐶) ∈ dom vol
6160a1i 11 . . . . 5 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
622adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝐴 ∈ ℂ)
6329, 30iccssred 39156 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
64 ax-resscn 9940 . . . . . . . . 9 ℝ ⊆ ℂ
6563, 64syl6ss 3596 . . . . . . . 8 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
6665sselda 3584 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝑦 ∈ ℂ)
6762, 66mulcld 10007 . . . . . 6 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (𝐴 · 𝑦) ∈ ℂ)
6867sincld 14788 . . . . 5 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
6965, 2, 52constcncfg 39405 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7065, 52idcncfg 39406 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝑦) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7169, 70mulcncf 23128 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7249, 71cncfmpt1f 22629 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
73 cniccibl 23520 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ)) → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7429, 30, 72, 73syl3anc 1323 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7559, 61, 68, 74iblss 23484 . . . 4 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7631, 75eqeltrd 2698 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) ∈ 𝐿1)
77 coscn 24110 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
7877a1i 11 . . . . . 6 (𝜑 → cos ∈ (ℂ–cn→ℂ))
7978, 71cncfmpt1f 22629 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
8079negcncfg 39415 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ -(cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
818neneqd 2795 . . . . . . 7 (𝜑 → ¬ 𝐴 = 0)
82 elsng 4164 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ {0} ↔ 𝐴 = 0))
832, 82syl 17 . . . . . . 7 (𝜑 → (𝐴 ∈ {0} ↔ 𝐴 = 0))
8481, 83mtbird 315 . . . . . 6 (𝜑 → ¬ 𝐴 ∈ {0})
852, 84eldifd 3567 . . . . 5 (𝜑𝐴 ∈ (ℂ ∖ {0}))
86 difssd 3718 . . . . 5 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
8765, 85, 86constcncfg 39405 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→(ℂ ∖ {0})))
8880, 87divcncf 23129 . . 3 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
8929, 30, 47, 57, 76, 88ftc2 23718 . 2 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)))
90 eqidd 2622 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))
91 oveq2 6615 . . . . . . . . . 10 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
9291fveq2d 6154 . . . . . . . . 9 (𝑦 = 𝐶 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝐶)))
9392negeqd 10222 . . . . . . . 8 (𝑦 = 𝐶 → -(cos‘(𝐴 · 𝑦)) = -(cos‘(𝐴 · 𝐶)))
9493oveq1d 6622 . . . . . . 7 (𝑦 = 𝐶 → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
9594adantl 482 . . . . . 6 ((𝜑𝑦 = 𝐶) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
9629rexrd 10036 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
9730rexrd 10036 . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
98 ubicc2 12234 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐶 ∈ (𝐵[,]𝐶))
9996, 97, 47, 98syl3anc 1323 . . . . . 6 (𝜑𝐶 ∈ (𝐵[,]𝐶))
100 ovex 6635 . . . . . . 7 (-(cos‘(𝐴 · 𝐶)) / 𝐴) ∈ V
101100a1i 11 . . . . . 6 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) ∈ V)
10290, 95, 99, 101fvmptd 6247 . . . . 5 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
103 oveq2 6615 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
104103fveq2d 6154 . . . . . . . . 9 (𝑦 = 𝐵 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝐵)))
105104negeqd 10222 . . . . . . . 8 (𝑦 = 𝐵 → -(cos‘(𝐴 · 𝑦)) = -(cos‘(𝐴 · 𝐵)))
106105oveq1d 6622 . . . . . . 7 (𝑦 = 𝐵 → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
107106adantl 482 . . . . . 6 ((𝜑𝑦 = 𝐵) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
108 lbicc2 12233 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
10996, 97, 47, 108syl3anc 1323 . . . . . 6 (𝜑𝐵 ∈ (𝐵[,]𝐶))
110 ovex 6635 . . . . . . 7 (-(cos‘(𝐴 · 𝐵)) / 𝐴) ∈ V
111110a1i 11 . . . . . 6 (𝜑 → (-(cos‘(𝐴 · 𝐵)) / 𝐴) ∈ V)
11290, 107, 109, 111fvmptd 6247 . . . . 5 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
113102, 112oveq12d 6625 . . . 4 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − (-(cos‘(𝐴 · 𝐵)) / 𝐴)))
11429recnd 10015 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1152, 114mulcld 10007 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
116115coscld 14789 . . . . . . 7 (𝜑 → (cos‘(𝐴 · 𝐵)) ∈ ℂ)
117116, 2, 8divnegd 10761 . . . . . 6 (𝜑 → -((cos‘(𝐴 · 𝐵)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
118117eqcomd 2627 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐵)) / 𝐴) = -((cos‘(𝐴 · 𝐵)) / 𝐴))
119118oveq2d 6623 . . . 4 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − (-(cos‘(𝐴 · 𝐵)) / 𝐴)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − -((cos‘(𝐴 · 𝐵)) / 𝐴)))
12030recnd 10015 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
1212, 120mulcld 10007 . . . . . . . 8 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
122121coscld 14789 . . . . . . 7 (𝜑 → (cos‘(𝐴 · 𝐶)) ∈ ℂ)
123122negcld 10326 . . . . . 6 (𝜑 → -(cos‘(𝐴 · 𝐶)) ∈ ℂ)
124123, 2, 8divcld 10748 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
125116, 2, 8divcld 10748 . . . . 5 (𝜑 → ((cos‘(𝐴 · 𝐵)) / 𝐴) ∈ ℂ)
126124, 125subnegd 10346 . . . 4 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − -((cos‘(𝐴 · 𝐵)) / 𝐴)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)))
127113, 119, 1263eqtrd 2659 . . 3 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)))
128124, 125addcomd 10185 . . 3 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)))
129122, 2, 8divnegd 10761 . . . . . 6 (𝜑 → -((cos‘(𝐴 · 𝐶)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
130129eqcomd 2627 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) = -((cos‘(𝐴 · 𝐶)) / 𝐴))
131130oveq2d 6623 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) + -((cos‘(𝐴 · 𝐶)) / 𝐴)))
132122, 2, 8divcld 10748 . . . . 5 (𝜑 → ((cos‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
133125, 132negsubd 10345 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + -((cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)))
134116, 122, 2, 8divsubdird 10787 . . . . 5 (𝜑 → (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴) = (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)))
135134eqcomd 2627 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
136131, 133, 1353eqtrd 2659 . . 3 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
137127, 128, 1363eqtrd 2659 . 2 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
13846, 89, 1373eqtrd 2659 1 (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  cdif 3553  wss 3556  {csn 4150  {cpr 4152   class class class wbr 4615  cmpt 4675  dom cdm 5076  cfv 5849  (class class class)co 6607  cc 9881  cr 9882  0cc0 9883   + caddc 9886   · cmul 9888  *cxr 10020  cle 10022  cmin 10213  -cneg 10214   / cdiv 10631  (,)cioo 12120  [,]cicc 12123  sincsin 14722  cosccos 14723  cnccncf 22592  volcvol 23145  𝐿1cibl 23299  citg 23300   D cdv 23540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cc 9204  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-disj 4586  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-ofr 6854  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-omul 7513  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-fi 8264  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-acn 8715  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-ioc 12125  df-ico 12126  df-icc 12127  df-fz 12272  df-fzo 12410  df-fl 12536  df-mod 12612  df-seq 12745  df-exp 12804  df-fac 13004  df-bc 13033  df-hash 13061  df-shft 13744  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-limsup 14139  df-clim 14156  df-rlim 14157  df-sum 14354  df-ef 14726  df-sin 14728  df-cos 14729  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-hom 15890  df-cco 15891  df-rest 16007  df-topn 16008  df-0g 16026  df-gsum 16027  df-topgen 16028  df-pt 16029  df-prds 16032  df-xrs 16086  df-qtop 16091  df-imas 16092  df-xps 16094  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-mulg 17465  df-cntz 17674  df-cmn 18119  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-fbas 19665  df-fg 19666  df-cnfld 19669  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cld 20736  df-ntr 20737  df-cls 20738  df-nei 20815  df-lp 20853  df-perf 20854  df-cn 20944  df-cnp 20945  df-haus 21032  df-cmp 21103  df-tx 21278  df-hmeo 21471  df-fil 21563  df-fm 21655  df-flim 21656  df-flf 21657  df-xms 22038  df-ms 22039  df-tms 22040  df-cncf 22594  df-ovol 23146  df-vol 23147  df-mbf 23301  df-itg1 23302  df-itg2 23303  df-ibl 23304  df-itg 23305  df-0p 23350  df-limc 23543  df-dv 23544
This theorem is referenced by:  sqwvfourb  39769
  Copyright terms: Public domain W3C validator