Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsubsticc Structured version   Visualization version   GIF version

Theorem itgsubsticc 39499
 Description: Integration by u-substitution. The main difference with respect to itgsubst 23716 is that here we consider the range of 𝐴(𝑥) to be in the closed interval (𝐾[,]𝐿). If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsubsticc.1 (𝜑𝑋 ∈ ℝ)
itgsubsticc.2 (𝜑𝑌 ∈ ℝ)
itgsubsticc.3 (𝜑𝑋𝑌)
itgsubsticc.4 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)))
itgsubsticc.5 (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ))
itgsubsticc.6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
itgsubsticc.7 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgsubsticc.8 (𝑢 = 𝐴𝐶 = 𝐸)
itgsubsticc.9 (𝑥 = 𝑋𝐴 = 𝐾)
itgsubsticc.10 (𝑥 = 𝑌𝐴 = 𝐿)
itgsubsticc.11 (𝜑𝐾 ∈ ℝ)
itgsubsticc.12 (𝜑𝐿 ∈ ℝ)
Assertion
Ref Expression
itgsubsticc (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Distinct variable groups:   𝑢,𝐴   𝑥,𝐶   𝑢,𝐸   𝑢,𝐾,𝑥   𝑢,𝐿,𝑥   𝑢,𝑋,𝑥   𝑢,𝑌,𝑥   𝜑,𝑢,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑢)   𝐶(𝑢)   𝐸(𝑥)

Proof of Theorem itgsubsticc
StepHypRef Expression
1 eqid 2621 . 2 (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)
2 eqid 2621 . 2 (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝑢), if(𝑢 < 𝐾, ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐾), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐿)))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝑢), if(𝑢 < 𝐾, ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐾), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐿))))
3 itgsubsticc.1 . 2 (𝜑𝑋 ∈ ℝ)
4 itgsubsticc.2 . 2 (𝜑𝑌 ∈ ℝ)
5 itgsubsticc.3 . 2 (𝜑𝑋𝑌)
6 itgsubsticc.4 . 2 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)))
7 itgsubsticc.6 . 2 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
8 itgsubsticc.5 . 2 (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ))
9 itgsubsticc.11 . 2 (𝜑𝐾 ∈ ℝ)
10 itgsubsticc.12 . 2 (𝜑𝐿 ∈ ℝ)
11 eqidd 2622 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴))
12 itgsubsticc.10 . . . . . . 7 (𝑥 = 𝑌𝐴 = 𝐿)
1312adantl 482 . . . . . 6 ((𝜑𝑥 = 𝑌) → 𝐴 = 𝐿)
143rexrd 10033 . . . . . . 7 (𝜑𝑋 ∈ ℝ*)
154rexrd 10033 . . . . . . 7 (𝜑𝑌 ∈ ℝ*)
16 ubicc2 12231 . . . . . . 7 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
1714, 15, 5, 16syl3anc 1323 . . . . . 6 (𝜑𝑌 ∈ (𝑋[,]𝑌))
1811, 13, 17, 10fvmptd 6245 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑌) = 𝐿)
19 cncff 22604 . . . . . . 7 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
206, 19syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
2120, 17ffvelrnd 6316 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑌) ∈ (𝐾[,]𝐿))
2218, 21eqeltrrd 2699 . . . 4 (𝜑𝐿 ∈ (𝐾[,]𝐿))
23 elicc2 12180 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐿 ∈ (𝐾[,]𝐿) ↔ (𝐿 ∈ ℝ ∧ 𝐾𝐿𝐿𝐿)))
249, 10, 23syl2anc 692 . . . 4 (𝜑 → (𝐿 ∈ (𝐾[,]𝐿) ↔ (𝐿 ∈ ℝ ∧ 𝐾𝐿𝐿𝐿)))
2522, 24mpbid 222 . . 3 (𝜑 → (𝐿 ∈ ℝ ∧ 𝐾𝐿𝐿𝐿))
2625simp2d 1072 . 2 (𝜑𝐾𝐿)
27 itgsubsticc.7 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
28 itgsubsticc.8 . 2 (𝑢 = 𝐴𝐶 = 𝐸)
29 itgsubsticc.9 . 2 (𝑥 = 𝑋𝐴 = 𝐾)
301, 2, 3, 4, 5, 6, 7, 8, 9, 10, 26, 27, 28, 29, 12itgsubsticclem 39498 1 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ∩ cin 3554  ifcif 4058   class class class wbr 4613   ↦ cmpt 4673  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  ℝcr 9879   · cmul 9885  ℝ*cxr 10017   < clt 10018   ≤ cle 10019  (,)cioo 12117  [,]cicc 12120  –cn→ccncf 22587  𝐿1cibl 23292  ⨜cdit 23516   D cdv 23533 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cc 9201  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-ovol 23140  df-vol 23141  df-mbf 23294  df-itg1 23295  df-itg2 23296  df-ibl 23297  df-itg 23298  df-0p 23343  df-ditg 23517  df-limc 23536  df-dv 23537 This theorem is referenced by:  itgiccshift  39503  itgperiod  39504  itgsbtaddcnst  39505
 Copyright terms: Public domain W3C validator