MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ituni0 Structured version   Visualization version   GIF version

Theorem ituni0 9097
Description: A zero-fold iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
ituni0 (𝐴𝑉 → ((𝑈𝐴)‘∅) = 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ituni0
StepHypRef Expression
1 ituni.u . . . 4 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
21itunifval 9095 . . 3 (𝐴𝑉 → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
32fveq1d 6087 . 2 (𝐴𝑉 → ((𝑈𝐴)‘∅) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘∅))
4 fr0g 7392 . 2 (𝐴𝑉 → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘∅) = 𝐴)
53, 4eqtrd 2640 1 (𝐴𝑉 → ((𝑈𝐴)‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  Vcvv 3169  c0 3870   cuni 4363  cmpt 4634  cres 5027  cfv 5787  ωcom 6931  reccrdg 7366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-om 6932  df-wrecs 7268  df-recs 7329  df-rdg 7367
This theorem is referenced by:  itunitc1  9099  itunitc  9100  ituniiun  9101  hsmexlem4  9108
  Copyright terms: Public domain W3C validator