![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuncld | Structured version Visualization version GIF version |
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iuncld | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difin 3996 | . . . 4 ⊢ (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = (𝑋 ∖ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) | |
2 | iundif2 4731 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = (𝑋 ∖ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) | |
3 | 1, 2 | eqtr4i 2777 | . . 3 ⊢ (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) |
4 | clscld.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | cldss 21027 | . . . . . . 7 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐵 ⊆ 𝑋) |
6 | dfss4 3993 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) | |
7 | 5, 6 | sylib 208 | . . . . . 6 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
8 | 7 | ralimi 3082 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
9 | 8 | 3ad2ant3 1129 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
10 | iuneq2 4681 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵 → ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = ∪ 𝑥 ∈ 𝐴 𝐵) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | 3, 11 | syl5eq 2798 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = ∪ 𝑥 ∈ 𝐴 𝐵) |
13 | simp1 1130 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) | |
14 | 4 | cldopn 21029 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
15 | 14 | ralimi 3082 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵) ∈ 𝐽) |
16 | 4 | riinopn 20907 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵) ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) |
17 | 15, 16 | syl3an3 1168 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) |
18 | 4 | opncld 21031 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) ∈ (Clsd‘𝐽)) |
19 | 13, 17, 18 | syl2anc 696 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) ∈ (Clsd‘𝐽)) |
20 | 12, 19 | eqeltrrd 2832 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ∀wral 3042 ∖ cdif 3704 ∩ cin 3706 ⊆ wss 3707 ∪ cuni 4580 ∪ ciun 4664 ∩ ciin 4665 ‘cfv 6041 Fincfn 8113 Topctop 20892 Clsdccld 21014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-en 8114 df-dom 8115 df-fin 8117 df-top 20893 df-cld 21017 |
This theorem is referenced by: unicld 21044 t1ficld 21325 mblfinlem1 33751 mblfinlem2 33752 |
Copyright terms: Public domain | W3C validator |