Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncld Structured version   Visualization version   GIF version

Theorem iuncld 21043
 Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
iuncld ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iuncld
StepHypRef Expression
1 difin 3996 . . . 4 (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = (𝑋 𝑥𝐴 (𝑋𝐵))
2 iundif2 4731 . . . 4 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = (𝑋 𝑥𝐴 (𝑋𝐵))
31, 2eqtr4i 2777 . . 3 (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = 𝑥𝐴 (𝑋 ∖ (𝑋𝐵))
4 clscld.1 . . . . . . . 8 𝑋 = 𝐽
54cldss 21027 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑋)
6 dfss4 3993 . . . . . . 7 (𝐵𝑋 ↔ (𝑋 ∖ (𝑋𝐵)) = 𝐵)
75, 6sylib 208 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ (𝑋𝐵)) = 𝐵)
87ralimi 3082 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵)
983ad2ant3 1129 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵)
10 iuneq2 4681 . . . 4 (∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝑥𝐴 𝐵)
119, 10syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝑥𝐴 𝐵)
123, 11syl5eq 2798 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = 𝑥𝐴 𝐵)
13 simp1 1130 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
144cldopn 21029 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
1514ralimi 3082 . . . 4 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 (𝑋𝐵) ∈ 𝐽)
164riinopn 20907 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝑋𝐵) ∈ 𝐽) → (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽)
1715, 16syl3an3 1168 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽)
184opncld 21031 . . 3 ((𝐽 ∈ Top ∧ (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) ∈ (Clsd‘𝐽))
1913, 17, 18syl2anc 696 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) ∈ (Clsd‘𝐽))
2012, 19eqeltrrd 2832 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1072   = wceq 1624   ∈ wcel 2131  ∀wral 3042   ∖ cdif 3704   ∩ cin 3706   ⊆ wss 3707  ∪ cuni 4580  ∪ ciun 4664  ∩ ciin 4665  ‘cfv 6041  Fincfn 8113  Topctop 20892  Clsdccld 21014 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-fin 8117  df-top 20893  df-cld 21017 This theorem is referenced by:  unicld  21044  t1ficld  21325  mblfinlem1  33751  mblfinlem2  33752
 Copyright terms: Public domain W3C validator