MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconn Structured version   Visualization version   GIF version

Theorem iunconn 22038
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iunconn.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconn.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconn.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconn.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
Assertion
Ref Expression
iunconn (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑃,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem iunconn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
2 simplr1 1211 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
3 n0 4312 . . . . . . . . . . 11 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (𝑢 𝑘𝐴 𝐵))
4 elinel2 4175 . . . . . . . . . . . . 13 (𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑣 𝑘𝐴 𝐵)
5 eliun 4925 . . . . . . . . . . . . . 14 (𝑣 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑣𝐵)
6 rexn0 4456 . . . . . . . . . . . . . 14 (∃𝑘𝐴 𝑣𝐵𝐴 ≠ ∅)
75, 6sylbi 219 . . . . . . . . . . . . 13 (𝑣 𝑘𝐴 𝐵𝐴 ≠ ∅)
84, 7syl 17 . . . . . . . . . . . 12 (𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
98exlimiv 1931 . . . . . . . . . . 11 (∃𝑣 𝑣 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
103, 9sylbi 219 . . . . . . . . . 10 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
112, 10syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝐴 ≠ ∅)
12 simplll 773 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝜑)
13 iunconn.4 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝑃𝐵)
1413ralrimiva 3184 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝑃𝐵)
1512, 14syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ∀𝑘𝐴 𝑃𝐵)
16 r19.2z 4442 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
1711, 15, 16syl2anc 586 . . . . . . . 8 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ∃𝑘𝐴 𝑃𝐵)
18 eliun 4925 . . . . . . . 8 (𝑃 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑃𝐵)
1917, 18sylibr 236 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑃 𝑘𝐴 𝐵)
201, 19sseldd 3970 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑃 ∈ (𝑢𝑣))
21 elun 4127 . . . . . 6 (𝑃 ∈ (𝑢𝑣) ↔ (𝑃𝑢𝑃𝑣))
2220, 21sylib 220 . . . . 5 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑃𝑢𝑃𝑣))
23 iunconn.2 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
2412, 23syl 17 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝐽 ∈ (TopOn‘𝑋))
25 iunconn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵𝑋)
2612, 25sylan 582 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → 𝐵𝑋)
2712, 13sylan 582 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → 𝑃𝐵)
28 iunconn.5 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
2912, 28sylan 582 . . . . . . 7 (((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) ∧ 𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
30 simpllr 774 . . . . . . . 8 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝐽𝑣𝐽))
3130simpld 497 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑢𝐽)
3230simprd 498 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑣𝐽)
33 simplr2 1212 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
34 simplr3 1213 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
35 nfv 1915 . . . . . . . . 9 𝑘(𝜑 ∧ (𝑢𝐽𝑣𝐽))
36 nfcv 2979 . . . . . . . . . . . 12 𝑘𝑢
37 nfiu1 4955 . . . . . . . . . . . 12 𝑘 𝑘𝐴 𝐵
3836, 37nfin 4195 . . . . . . . . . . 11 𝑘(𝑢 𝑘𝐴 𝐵)
39 nfcv 2979 . . . . . . . . . . 11 𝑘
4038, 39nfne 3121 . . . . . . . . . 10 𝑘(𝑢 𝑘𝐴 𝐵) ≠ ∅
41 nfcv 2979 . . . . . . . . . . . 12 𝑘𝑣
4241, 37nfin 4195 . . . . . . . . . . 11 𝑘(𝑣 𝑘𝐴 𝐵)
4342, 39nfne 3121 . . . . . . . . . 10 𝑘(𝑣 𝑘𝐴 𝐵) ≠ ∅
44 nfcv 2979 . . . . . . . . . . 11 𝑘(𝑢𝑣)
45 nfcv 2979 . . . . . . . . . . . 12 𝑘𝑋
4645, 37nfdif 4104 . . . . . . . . . . 11 𝑘(𝑋 𝑘𝐴 𝐵)
4744, 46nfss 3962 . . . . . . . . . 10 𝑘(𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)
4840, 43, 47nf3an 1902 . . . . . . . . 9 𝑘((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
4935, 48nfan 1900 . . . . . . . 8 𝑘((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)))
5036, 41nfun 4143 . . . . . . . . 9 𝑘(𝑢𝑣)
5137, 50nfss 3962 . . . . . . . 8 𝑘 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)
5249, 51nfan 1900 . . . . . . 7 𝑘(((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
5324, 26, 27, 29, 31, 32, 33, 34, 1, 52iunconnlem 22037 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ 𝑃𝑢)
54 incom 4180 . . . . . . . 8 (𝑣𝑢) = (𝑢𝑣)
5554, 34eqsstrid 4017 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣𝑢) ⊆ (𝑋 𝑘𝐴 𝐵))
56 uncom 4131 . . . . . . . 8 (𝑢𝑣) = (𝑣𝑢)
571, 56sseqtrdi 4019 . . . . . . 7 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑘𝐴 𝐵 ⊆ (𝑣𝑢))
5824, 26, 27, 29, 32, 31, 2, 55, 57, 52iunconnlem 22037 . . . . . 6 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ 𝑃𝑣)
59 ioran 980 . . . . . 6 (¬ (𝑃𝑢𝑃𝑣) ↔ (¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣))
6053, 58, 59sylanbrc 585 . . . . 5 ((((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ (𝑃𝑢𝑃𝑣))
6122, 60pm2.65da 815 . . . 4 (((𝜑 ∧ (𝑢𝐽𝑣𝐽)) ∧ ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
6261ex 415 . . 3 ((𝜑 ∧ (𝑢𝐽𝑣𝐽)) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
6362ralrimivva 3193 . 2 (𝜑 → ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
6425ralrimiva 3184 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑋)
65 iunss 4971 . . . 4 ( 𝑘𝐴 𝐵𝑋 ↔ ∀𝑘𝐴 𝐵𝑋)
6664, 65sylibr 236 . . 3 (𝜑 𝑘𝐴 𝐵𝑋)
67 connsub 22031 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋) → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
6823, 66, 67syl2anc 586 . 2 (𝜑 → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
6963, 68mpbird 259 1 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083  wex 1780  wcel 2114  wne 3018  wral 3140  wrex 3141  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293   ciun 4921  cfv 6357  (class class class)co 7158  t crest 16696  TopOnctopon 21520  Conncconn 22021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-er 8291  df-en 8512  df-fin 8515  df-fi 8877  df-rest 16698  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629  df-conn 22022
This theorem is referenced by:  unconn  22039  conncompconn  22042
  Copyright terms: Public domain W3C validator