MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundom Structured version   Visualization version   GIF version

Theorem iundom 9308
Description: An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
iundom ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem iundom
StepHypRef Expression
1 eqid 2621 . 2 𝑥𝐴 ({𝑥} × 𝐶) = 𝑥𝐴 ({𝑥} × 𝐶)
2 simpl 473 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝐴𝑉)
3 ovex 6632 . . . . . 6 (𝐵𝑚 𝐶) ∈ V
43rgenw 2919 . . . . 5 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V
5 iunexg 7089 . . . . 5 ((𝐴𝑉 ∧ ∀𝑥𝐴 (𝐵𝑚 𝐶) ∈ V) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V)
62, 4, 5sylancl 693 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V)
7 numth3 9236 . . . 4 ( 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ dom card)
86, 7syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ dom card)
9 numacn 8816 . . 3 (𝐴𝑉 → ( 𝑥𝐴 (𝐵𝑚 𝐶) ∈ dom card → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ AC 𝐴))
102, 8, 9sylc 65 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ AC 𝐴)
11 simpr 477 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → ∀𝑥𝐴 𝐶𝐵)
12 reldom 7905 . . . . . 6 Rel ≼
1312brrelexi 5118 . . . . 5 (𝐶𝐵𝐶 ∈ V)
1413ralimi 2947 . . . 4 (∀𝑥𝐴 𝐶𝐵 → ∀𝑥𝐴 𝐶 ∈ V)
15 iunexg 7089 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶 ∈ V) → 𝑥𝐴 𝐶 ∈ V)
1614, 15sylan2 491 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ V)
171, 10, 11iundom2g 9306 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵))
1812brrelex2i 5119 . . . 4 ( 𝑥𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵) → (𝐴 × 𝐵) ∈ V)
19 numth3 9236 . . . 4 ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ dom card)
2017, 18, 193syl 18 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → (𝐴 × 𝐵) ∈ dom card)
21 numacn 8816 . . 3 ( 𝑥𝐴 𝐶 ∈ V → ((𝐴 × 𝐵) ∈ dom card → (𝐴 × 𝐵) ∈ AC 𝑥𝐴 𝐶))
2216, 20, 21sylc 65 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → (𝐴 × 𝐵) ∈ AC 𝑥𝐴 𝐶)
231, 10, 11, 22iundomg 9307 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987  wral 2907  Vcvv 3186  {csn 4148   ciun 4485   class class class wbr 4613   × cxp 5072  dom cdm 5074  (class class class)co 6604  𝑚 cmap 7802  cdom 7897  cardccrd 8705  AC wacn 8708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-ac2 9229
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-card 8709  df-acn 8712  df-ac 8883
This theorem is referenced by:  unidom  9309  alephreg  9348  inar1  9541
  Copyright terms: Public domain W3C validator