MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfo Structured version   Visualization version   GIF version

Theorem iunfo 9955
Description: Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 18-Jan-2014.)
Hypothesis
Ref Expression
iunfo.1 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
Assertion
Ref Expression
iunfo (2nd𝑇):𝑇onto 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥)

Proof of Theorem iunfo
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fo2nd 7704 . . . 4 2nd :V–onto→V
2 fof 6584 . . . 4 (2nd :V–onto→V → 2nd :V⟶V)
3 ffn 6508 . . . 4 (2nd :V⟶V → 2nd Fn V)
41, 2, 3mp2b 10 . . 3 2nd Fn V
5 ssv 3990 . . 3 𝑇 ⊆ V
6 fnssres 6464 . . 3 ((2nd Fn V ∧ 𝑇 ⊆ V) → (2nd𝑇) Fn 𝑇)
74, 5, 6mp2an 690 . 2 (2nd𝑇) Fn 𝑇
8 df-ima 5562 . . 3 (2nd𝑇) = ran (2nd𝑇)
9 iunfo.1 . . . . . . . . . . 11 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
109eleq2i 2904 . . . . . . . . . 10 (𝑧𝑇𝑧 𝑥𝐴 ({𝑥} × 𝐵))
11 eliun 4915 . . . . . . . . . 10 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
1210, 11bitri 277 . . . . . . . . 9 (𝑧𝑇 ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
13 xp2nd 7716 . . . . . . . . . . 11 (𝑧 ∈ ({𝑥} × 𝐵) → (2nd𝑧) ∈ 𝐵)
14 eleq1 2900 . . . . . . . . . . 11 ((2nd𝑧) = 𝑦 → ((2nd𝑧) ∈ 𝐵𝑦𝐵))
1513, 14syl5ib 246 . . . . . . . . . 10 ((2nd𝑧) = 𝑦 → (𝑧 ∈ ({𝑥} × 𝐵) → 𝑦𝐵))
1615reximdv 3273 . . . . . . . . 9 ((2nd𝑧) = 𝑦 → (∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵) → ∃𝑥𝐴 𝑦𝐵))
1712, 16syl5bi 244 . . . . . . . 8 ((2nd𝑧) = 𝑦 → (𝑧𝑇 → ∃𝑥𝐴 𝑦𝐵))
1817impcom 410 . . . . . . 7 ((𝑧𝑇 ∧ (2nd𝑧) = 𝑦) → ∃𝑥𝐴 𝑦𝐵)
1918rexlimiva 3281 . . . . . 6 (∃𝑧𝑇 (2nd𝑧) = 𝑦 → ∃𝑥𝐴 𝑦𝐵)
20 nfiu1 4945 . . . . . . . . 9 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
219, 20nfcxfr 2975 . . . . . . . 8 𝑥𝑇
22 nfv 1911 . . . . . . . 8 𝑥(2nd𝑧) = 𝑦
2321, 22nfrex 3309 . . . . . . 7 𝑥𝑧𝑇 (2nd𝑧) = 𝑦
24 ssiun2 4963 . . . . . . . . . . . 12 (𝑥𝐴 → ({𝑥} × 𝐵) ⊆ 𝑥𝐴 ({𝑥} × 𝐵))
2524adantr 483 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ({𝑥} × 𝐵) ⊆ 𝑥𝐴 ({𝑥} × 𝐵))
26 simpr 487 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐵) → 𝑦𝐵)
27 vsnid 4595 . . . . . . . . . . . . 13 𝑥 ∈ {𝑥}
28 opelxp 5585 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ ({𝑥} × 𝐵) ↔ (𝑥 ∈ {𝑥} ∧ 𝑦𝐵))
2927, 28mpbiran 707 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ ({𝑥} × 𝐵) ↔ 𝑦𝐵)
3026, 29sylibr 236 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ ({𝑥} × 𝐵))
3125, 30sseldd 3967 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
3231, 9eleqtrrdi 2924 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝑇)
33 vex 3497 . . . . . . . . . 10 𝑥 ∈ V
34 vex 3497 . . . . . . . . . 10 𝑦 ∈ V
3533, 34op2nd 7692 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
36 fveqeq2 6673 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((2nd𝑧) = 𝑦 ↔ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦))
3736rspcev 3622 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ 𝑇 ∧ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦) → ∃𝑧𝑇 (2nd𝑧) = 𝑦)
3832, 35, 37sylancl 588 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → ∃𝑧𝑇 (2nd𝑧) = 𝑦)
3938ex 415 . . . . . . 7 (𝑥𝐴 → (𝑦𝐵 → ∃𝑧𝑇 (2nd𝑧) = 𝑦))
4023, 39rexlimi 3315 . . . . . 6 (∃𝑥𝐴 𝑦𝐵 → ∃𝑧𝑇 (2nd𝑧) = 𝑦)
4119, 40impbii 211 . . . . 5 (∃𝑧𝑇 (2nd𝑧) = 𝑦 ↔ ∃𝑥𝐴 𝑦𝐵)
42 fvelimab 6731 . . . . . 6 ((2nd Fn V ∧ 𝑇 ⊆ V) → (𝑦 ∈ (2nd𝑇) ↔ ∃𝑧𝑇 (2nd𝑧) = 𝑦))
434, 5, 42mp2an 690 . . . . 5 (𝑦 ∈ (2nd𝑇) ↔ ∃𝑧𝑇 (2nd𝑧) = 𝑦)
44 eliun 4915 . . . . 5 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
4541, 43, 443bitr4i 305 . . . 4 (𝑦 ∈ (2nd𝑇) ↔ 𝑦 𝑥𝐴 𝐵)
4645eqriv 2818 . . 3 (2nd𝑇) = 𝑥𝐴 𝐵
478, 46eqtr3i 2846 . 2 ran (2nd𝑇) = 𝑥𝐴 𝐵
48 df-fo 6355 . 2 ((2nd𝑇):𝑇onto 𝑥𝐴 𝐵 ↔ ((2nd𝑇) Fn 𝑇 ∧ ran (2nd𝑇) = 𝑥𝐴 𝐵))
497, 47, 48mpbir2an 709 1 (2nd𝑇):𝑇onto 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139  Vcvv 3494  wss 3935  {csn 4560  cop 4566   ciun 4911   × cxp 5547  ran crn 5550  cres 5551  cima 5552   Fn wfn 6344  wf 6345  ontowfo 6347  cfv 6349  2nd c2nd 7682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fo 6355  df-fv 6357  df-2nd 7684
This theorem is referenced by:  iundomg  9957
  Copyright terms: Public domain W3C validator