![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunmapdisj | Structured version Visualization version GIF version |
Description: The union ∪ 𝑛 ∈ 𝐶(𝐴 ↑𝑚 𝑛) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
iunmapdisj | ⊢ ∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑𝑚 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 3511 | . . . 4 ⊢ ∃*𝑛 𝑛 = dom 𝐵 | |
2 | elmapi 8033 | . . . . . 6 ⊢ (𝐵 ∈ (𝐴 ↑𝑚 𝑛) → 𝐵:𝑛⟶𝐴) | |
3 | fdm 6200 | . . . . . . 7 ⊢ (𝐵:𝑛⟶𝐴 → dom 𝐵 = 𝑛) | |
4 | 3 | eqcomd 2754 | . . . . . 6 ⊢ (𝐵:𝑛⟶𝐴 → 𝑛 = dom 𝐵) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝐵 ∈ (𝐴 ↑𝑚 𝑛) → 𝑛 = dom 𝐵) |
6 | 5 | moimi 2646 | . . . 4 ⊢ (∃*𝑛 𝑛 = dom 𝐵 → ∃*𝑛 𝐵 ∈ (𝐴 ↑𝑚 𝑛)) |
7 | 1, 6 | ax-mp 5 | . . 3 ⊢ ∃*𝑛 𝐵 ∈ (𝐴 ↑𝑚 𝑛) |
8 | 7 | moani 2651 | . 2 ⊢ ∃*𝑛(𝑛 ∈ 𝐶 ∧ 𝐵 ∈ (𝐴 ↑𝑚 𝑛)) |
9 | df-rmo 3046 | . 2 ⊢ (∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑𝑚 𝑛) ↔ ∃*𝑛(𝑛 ∈ 𝐶 ∧ 𝐵 ∈ (𝐴 ↑𝑚 𝑛))) | |
10 | 8, 9 | mpbir 221 | 1 ⊢ ∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑𝑚 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1620 ∈ wcel 2127 ∃*wmo 2596 ∃*wrmo 3041 dom cdm 5254 ⟶wf 6033 (class class class)co 6801 ↑𝑚 cmap 8011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-fv 6045 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-1st 7321 df-2nd 7322 df-map 8013 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |