MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl Structured version   Visualization version   GIF version

Theorem iunmbl 23228
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)

Proof of Theorem iunmbl
Dummy variables 𝑖 𝑘 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1840 . . . . 5 𝑘 𝐴 ∈ dom vol
2 nfcsb1v 3530 . . . . . 6 𝑛𝑘 / 𝑛𝐴
32nfel1 2775 . . . . 5 𝑛𝑘 / 𝑛𝐴 ∈ dom vol
4 csbeq1a 3523 . . . . . 6 (𝑛 = 𝑘𝐴 = 𝑘 / 𝑛𝐴)
54eleq1d 2683 . . . . 5 (𝑛 = 𝑘 → (𝐴 ∈ dom vol ↔ 𝑘 / 𝑛𝐴 ∈ dom vol))
61, 3, 5cbvral 3155 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol)
7 nfcv 2761 . . . . . . 7 𝑘𝐴
87, 2, 4cbviun 4523 . . . . . 6 𝑛 ∈ ℕ 𝐴 = 𝑘 ∈ ℕ 𝑘 / 𝑛𝐴
9 csbeq1 3517 . . . . . . 7 (𝑘 = 𝑚𝑘 / 𝑛𝐴 = 𝑚 / 𝑛𝐴)
109iundisj 23223 . . . . . 6 𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 = 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)
118, 10eqtri 2643 . . . . 5 𝑛 ∈ ℕ 𝐴 = 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)
12 difexg 4768 . . . . . . 7 (𝑘 / 𝑛𝐴 ∈ dom vol → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V)
1312ralimi 2947 . . . . . 6 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → ∀𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V)
14 dfiun2g 4518 . . . . . 6 (∀𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V → 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
1513, 14syl 17 . . . . 5 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
1611, 15syl5eq 2667 . . . 4 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
176, 16sylbi 207 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
18 eqid 2621 . . . . 5 (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))
1918rnmpt 5331 . . . 4 ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)}
2019unieqi 4411 . . 3 ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)}
2117, 20syl6eqr 2673 . 2 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)))
223, 5rspc 3289 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑘 / 𝑛𝐴 ∈ dom vol))
2322impcom 446 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 ∈ dom vol)
24 fzofi 12713 . . . . . 6 (1..^𝑘) ∈ Fin
25 nfv 1840 . . . . . . . . 9 𝑚 𝐴 ∈ dom vol
26 nfcsb1v 3530 . . . . . . . . . 10 𝑛𝑚 / 𝑛𝐴
2726nfel1 2775 . . . . . . . . 9 𝑛𝑚 / 𝑛𝐴 ∈ dom vol
28 csbeq1a 3523 . . . . . . . . . 10 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
2928eleq1d 2683 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐴 ∈ dom vol ↔ 𝑚 / 𝑛𝐴 ∈ dom vol))
3025, 27, 29cbvral 3155 . . . . . . . 8 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol)
31 fzossnn 12457 . . . . . . . . 9 (1..^𝑘) ⊆ ℕ
32 ssralv 3645 . . . . . . . . 9 ((1..^𝑘) ⊆ ℕ → (∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol))
3331, 32ax-mp 5 . . . . . . . 8 (∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3430, 33sylbi 207 . . . . . . 7 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3534adantr 481 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
36 finiunmbl 23219 . . . . . 6 (((1..^𝑘) ∈ Fin ∧ ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol) → 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3724, 35, 36sylancr 694 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
38 difmbl 23218 . . . . 5 ((𝑘 / 𝑛𝐴 ∈ dom vol ∧ 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol) → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ dom vol)
3923, 37, 38syl2anc 692 . . . 4 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ dom vol)
4039, 18fmptd 6340 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)):ℕ⟶dom vol)
41 csbeq1 3517 . . . . 5 (𝑖 = 𝑚𝑖 / 𝑛𝐴 = 𝑚 / 𝑛𝐴)
4241iundisj2 23224 . . . 4 Disj 𝑖 ∈ ℕ (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)
43 simpr 477 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
44 nfcsb1v 3530 . . . . . . . . . 10 𝑛𝑖 / 𝑛𝐴
4544nfel1 2775 . . . . . . . . 9 𝑛𝑖 / 𝑛𝐴 ∈ dom vol
46 csbeq1a 3523 . . . . . . . . . 10 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
4746eleq1d 2683 . . . . . . . . 9 (𝑛 = 𝑖 → (𝐴 ∈ dom vol ↔ 𝑖 / 𝑛𝐴 ∈ dom vol))
4845, 47rspc 3289 . . . . . . . 8 (𝑖 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑖 / 𝑛𝐴 ∈ dom vol))
4948impcom 446 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → 𝑖 / 𝑛𝐴 ∈ dom vol)
50 difexg 4768 . . . . . . 7 (𝑖 / 𝑛𝐴 ∈ dom vol → (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴) ∈ V)
5149, 50syl 17 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴) ∈ V)
52 csbeq1 3517 . . . . . . . 8 (𝑘 = 𝑖𝑘 / 𝑛𝐴 = 𝑖 / 𝑛𝐴)
53 oveq2 6612 . . . . . . . . 9 (𝑘 = 𝑖 → (1..^𝑘) = (1..^𝑖))
5453iuneq1d 4511 . . . . . . . 8 (𝑘 = 𝑖 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 = 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)
5552, 54difeq12d 3707 . . . . . . 7 (𝑘 = 𝑖 → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴))
5655, 18fvmptg 6237 . . . . . 6 ((𝑖 ∈ ℕ ∧ (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴) ∈ V) → ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖) = (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴))
5743, 51, 56syl2anc 692 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖) = (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴))
5857disjeq2dv 4588 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (Disj 𝑖 ∈ ℕ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖) ↔ Disj 𝑖 ∈ ℕ (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)))
5942, 58mpbiri 248 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → Disj 𝑖 ∈ ℕ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖))
60 eqid 2621 . . 3 (𝑦 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑦)))) = (𝑦 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑦))))
6140, 59, 60voliunlem2 23226 . 2 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) ∈ dom vol)
6221, 61eqeltrd 2698 1 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {cab 2607  wral 2907  wrex 2908  Vcvv 3186  csb 3514  cdif 3552  cin 3554  wss 3555   cuni 4402   ciun 4485  Disj wdisj 4583  cmpt 4673  dom cdm 5074  ran crn 5075  cfv 5847  (class class class)co 6604  Fincfn 7899  1c1 9881  cn 10964  ..^cfzo 12406  vol*covol 23138  volcvol 23139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cc 9201  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xadd 11891  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154  df-sum 14351  df-xmet 19658  df-met 19659  df-ovol 23140  df-vol 23141
This theorem is referenced by:  volsup  23231  iunmbl2  23232  vitalilem4  23286  vitalilem5  23287  ismbf3d  23327  itg2gt0  23433  voliune  30070  dmvolsal  39868  voliunsge0lem  39993
  Copyright terms: Public domain W3C validator