MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxpf Structured version   Visualization version   GIF version

Theorem iunxpf 5180
Description: Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
iunxpf.1 𝑦𝐶
iunxpf.2 𝑧𝐶
iunxpf.3 𝑥𝐷
iunxpf.4 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
iunxpf 𝑥 ∈ (𝐴 × 𝐵)𝐶 = 𝑦𝐴 𝑧𝐵 𝐷
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)

Proof of Theorem iunxpf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 iunxpf.1 . . . . 5 𝑦𝐶
21nfcri 2744 . . . 4 𝑦 𝑤𝐶
3 iunxpf.2 . . . . 5 𝑧𝐶
43nfcri 2744 . . . 4 𝑧 𝑤𝐶
5 iunxpf.3 . . . . 5 𝑥𝐷
65nfcri 2744 . . . 4 𝑥 𝑤𝐷
7 iunxpf.4 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
87eleq2d 2672 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑤𝐶𝑤𝐷))
92, 4, 6, 8rexxpf 5179 . . 3 (∃𝑥 ∈ (𝐴 × 𝐵)𝑤𝐶 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
10 eliun 4454 . . 3 (𝑤 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 × 𝐵)𝑤𝐶)
11 eliun 4454 . . . 4 (𝑤 𝑦𝐴 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴 𝑤 𝑧𝐵 𝐷)
12 eliun 4454 . . . . 5 (𝑤 𝑧𝐵 𝐷 ↔ ∃𝑧𝐵 𝑤𝐷)
1312rexbii 3022 . . . 4 (∃𝑦𝐴 𝑤 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
1411, 13bitri 262 . . 3 (𝑤 𝑦𝐴 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
159, 10, 143bitr4i 290 . 2 (𝑤 𝑥 ∈ (𝐴 × 𝐵)𝐶𝑤 𝑦𝐴 𝑧𝐵 𝐷)
1615eqriv 2606 1 𝑥 ∈ (𝐴 × 𝐵)𝐶 = 𝑦𝐴 𝑧𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  wnfc 2737  wrex 2896  cop 4130   ciun 4449   × cxp 5026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-iun 4451  df-opab 4638  df-xp 5034  df-rel 5035
This theorem is referenced by:  dfmpt2  7131
  Copyright terms: Public domain W3C validator