Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpeq2d Structured version   Visualization version   GIF version

Theorem ixpeq2d 39063
Description: Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ixpeq2d.1 𝑥𝜑
ixpeq2d.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
ixpeq2d (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)

Proof of Theorem ixpeq2d
StepHypRef Expression
1 ixpeq2d.1 . . 3 𝑥𝜑
2 ixpeq2d.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
32ex 450 . . 3 (𝜑 → (𝑥𝐴𝐵 = 𝐶))
41, 3ralrimi 2956 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
5 ixpeq2 7919 . 2 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
64, 5syl 17 1 (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wnf 1707  wcel 1989  wral 2911  Xcixp 7905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-in 3579  df-ss 3586  df-ixp 7906
This theorem is referenced by:  hoicvrrex  40539  ovnlecvr  40541  ovnhoilem1  40584  hoi2toco  40590  ovnlecvr2  40593  opnvonmbllem1  40615
  Copyright terms: Public domain W3C validator