![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version |
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
Ref | Expression |
---|---|
ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 472 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | ixpeq2dva 8087 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2137 Xcixp 8072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-in 3720 df-ss 3727 df-ixp 8073 |
This theorem is referenced by: prdsval 16315 brssc 16673 isfunc 16723 natfval 16805 isnat 16806 dprdval 18600 elpt 21575 elptr 21576 dfac14 21621 hoicvrrex 41274 ovncvrrp 41282 ovnsubaddlem1 41288 ovnsubadd 41290 hoidmvlelem3 41315 hoidmvle 41318 ovnhoilem1 41319 ovnhoilem2 41320 ovnhoi 41321 hspval 41327 ovncvr2 41329 hspmbllem2 41345 hspmbl 41347 hoimbl 41349 opnvonmbl 41352 ovnovollem1 41374 ovnovollem3 41376 iinhoiicclem 41391 iinhoiicc 41392 vonioolem2 41399 vonioo 41400 vonicclem2 41402 vonicc 41403 |
Copyright terms: Public domain | W3C validator |