MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpexg Structured version   Visualization version   GIF version

Theorem ixpexg 7876
Description: The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpexg (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpexg
StepHypRef Expression
1 uniixp 7875 . . . 4 X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
2 iunexg 7089 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
3 xpexg 6913 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐴 𝐵 ∈ V) → (𝐴 × 𝑥𝐴 𝐵) ∈ V)
42, 3syldan 487 . . . 4 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → (𝐴 × 𝑥𝐴 𝐵) ∈ V)
5 ssexg 4764 . . . 4 (( X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵) ∧ (𝐴 × 𝑥𝐴 𝐵) ∈ V) → X𝑥𝐴 𝐵 ∈ V)
61, 4, 5sylancr 694 . . 3 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
7 uniexb 6921 . . 3 (X𝑥𝐴 𝐵 ∈ V ↔ X𝑥𝐴 𝐵 ∈ V)
86, 7sylibr 224 . 2 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
9 ixpprc 7873 . . . 4 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
10 0ex 4750 . . . 4 ∅ ∈ V
119, 10syl6eqel 2706 . . 3 𝐴 ∈ V → X𝑥𝐴 𝐵 ∈ V)
1211adantr 481 . 2 ((¬ 𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
138, 12pm2.61ian 830 1 (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wcel 1987  wral 2907  Vcvv 3186  wss 3555  c0 3891   cuni 4402   ciun 4485   × cxp 5072  Xcixp 7852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ixp 7853
This theorem is referenced by:  konigthlem  9334  prdsbasex  16032  isfunc  16445  isnat  16528  natffn  16530  dmdprd  18318  dprdval  18323  elpt  21285  ptbasin2  21291  ptbasfi  21294  ptrest  33037  upixp  33153  hspval  40127  hspmbl  40147  vonioolem2  40199  vonicclem2  40202
  Copyright terms: Public domain W3C validator