![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpssmapc | Structured version Visualization version GIF version |
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
ixpssmapc.x | ⊢ Ⅎ𝑥𝜑 |
ixpssmapc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
ixpssmapc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
ixpssmapc | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑𝑚 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpssmapc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
2 | ixpssmapc.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
3 | ixpssmapc.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
4 | 3 | ex 449 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶)) |
5 | 2, 4 | ralrimi 2986 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
6 | iunss 4593 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
7 | 5, 6 | sylibr 224 | . . . 4 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
8 | 1, 7 | ssexd 4838 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
9 | ixpssmap2g 7979 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) |
11 | mapss 7942 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴) ⊆ (𝐶 ↑𝑚 𝐴)) | |
12 | 1, 7, 11 | syl2anc 694 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴) ⊆ (𝐶 ↑𝑚 𝐴)) |
13 | 10, 12 | sstrd 3646 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑𝑚 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 Ⅎwnf 1748 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ⊆ wss 3607 ∪ ciun 4552 (class class class)co 6690 ↑𝑚 cmap 7899 Xcixp 7950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-map 7901 df-ixp 7951 |
This theorem is referenced by: ioorrnopnlem 40842 |
Copyright terms: Public domain | W3C validator |