Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jabtaib Structured version   Visualization version   GIF version

Theorem jabtaib 40433
Description: For when pm3.4 lacks a pm3.4i. (Contributed by Jarvin Udandy, 9-Sep-2020.)
Hypothesis
Ref Expression
jabtaib.1 (𝜑𝜓)
Assertion
Ref Expression
jabtaib (𝜑𝜓)

Proof of Theorem jabtaib
StepHypRef Expression
1 jabtaib.1 . 2 (𝜑𝜓)
2 pm3.4 583 . 2 ((𝜑𝜓) → (𝜑𝜓))
31, 2ax-mp 5 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator