MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jarl Structured version   Visualization version   GIF version

Theorem jarl 173
Description: Elimination of a nested antecedent as a partial converse of ja 171 (the other being jarr 103). (Contributed by Wolf Lammen, 10-May-2013.)
Assertion
Ref Expression
jarl (((𝜑𝜓) → 𝜒) → (¬ 𝜑𝜒))

Proof of Theorem jarl
StepHypRef Expression
1 pm2.21 118 . 2 𝜑 → (𝜑𝜓))
21imim1i 60 1 (((𝜑𝜓) → 𝜒) → (¬ 𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.68  424  merco2  1651  rp-fakeimass  36672
  Copyright terms: Public domain W3C validator