MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcab Structured version   Visualization version   GIF version

Theorem jcab 902
Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.)
Assertion
Ref Expression
jcab ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem jcab
StepHypRef Expression
1 simpl 471 . . . 4 ((𝜓𝜒) → 𝜓)
21imim2i 16 . . 3 ((𝜑 → (𝜓𝜒)) → (𝜑𝜓))
3 simpr 475 . . . 4 ((𝜓𝜒) → 𝜒)
43imim2i 16 . . 3 ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))
52, 4jca 552 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))
6 pm3.43 901 . 2 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
75, 6impbii 197 1 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-an 384
This theorem is referenced by:  ordi  903  pm4.76  905  pm5.44  947  2mo2  2534  ssconb  3701  ssin  3793  tfr3  7356  trclfvcotr  13541  isprm2  15176  lgsquad2lem2  24824  ostthlem2  25031  pclclN  33995  ifpbibib  36674  elmapintrab  36701  elinintrab  36702  2reu4a  39639
  Copyright terms: Public domain W3C validator