MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jensenlem1 Structured version   Visualization version   GIF version

Theorem jensenlem1 24626
Description: Lemma for jensen 24628. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
jensen.1 (𝜑𝐷 ⊆ ℝ)
jensen.2 (𝜑𝐹:𝐷⟶ℝ)
jensen.3 ((𝜑 ∧ (𝑎𝐷𝑏𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷)
jensen.4 (𝜑𝐴 ∈ Fin)
jensen.5 (𝜑𝑇:𝐴⟶(0[,)+∞))
jensen.6 (𝜑𝑋:𝐴𝐷)
jensen.7 (𝜑 → 0 < (ℂfld Σg 𝑇))
jensen.8 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
jensenlem.1 (𝜑 → ¬ 𝑧𝐵)
jensenlem.2 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
jensenlem.s 𝑆 = (ℂfld Σg (𝑇𝐵))
jensenlem.l 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
Assertion
Ref Expression
jensenlem1 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
Distinct variable groups:   𝑎,𝑏,𝑡,𝑥,𝑦,𝐴   𝐷,𝑎,𝑏,𝑡,𝑥,𝑦   𝜑,𝑎,𝑏,𝑡,𝑥,𝑦   𝐹,𝑎,𝑏,𝑡,𝑥,𝑦   𝑇,𝑎,𝑏,𝑡,𝑥,𝑦   𝑋,𝑎,𝑏,𝑡,𝑥,𝑦   𝑧,𝑎,𝐵,𝑏,𝑡,𝑥,𝑦   𝑡,𝐿,𝑥,𝑦   𝑆,𝑎,𝑏,𝑡,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐷(𝑧)   𝑆(𝑧)   𝑇(𝑧)   𝐹(𝑧)   𝐿(𝑧,𝑎,𝑏)   𝑋(𝑧)

Proof of Theorem jensenlem1
StepHypRef Expression
1 cnfldbas 19678 . . . 4 ℂ = (Base‘ℂfld)
2 cnfldadd 19679 . . . 4 + = (+g‘ℂfld)
3 cnring 19696 . . . . 5 fld ∈ Ring
4 ringcmn 18509 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
53, 4mp1i 13 . . . 4 (𝜑 → ℂfld ∈ CMnd)
6 jensen.4 . . . . 5 (𝜑𝐴 ∈ Fin)
7 jensenlem.2 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
87unssad 3773 . . . . 5 (𝜑𝐵𝐴)
9 ssfi 8131 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
106, 8, 9syl2anc 692 . . . 4 (𝜑𝐵 ∈ Fin)
11 rge0ssre 12229 . . . . . 6 (0[,)+∞) ⊆ ℝ
12 ax-resscn 9944 . . . . . 6 ℝ ⊆ ℂ
1311, 12sstri 3596 . . . . 5 (0[,)+∞) ⊆ ℂ
148sselda 3587 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐴)
15 jensen.5 . . . . . . 7 (𝜑𝑇:𝐴⟶(0[,)+∞))
1615ffvelrnda 6320 . . . . . 6 ((𝜑𝑥𝐴) → (𝑇𝑥) ∈ (0[,)+∞))
1714, 16syldan 487 . . . . 5 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ (0[,)+∞))
1813, 17sseldi 3585 . . . 4 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ ℂ)
197unssbd 3774 . . . . 5 (𝜑 → {𝑧} ⊆ 𝐴)
20 vex 3192 . . . . . 6 𝑧 ∈ V
2120snss 4291 . . . . 5 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
2219, 21sylibr 224 . . . 4 (𝜑𝑧𝐴)
23 jensenlem.1 . . . 4 (𝜑 → ¬ 𝑧𝐵)
2415, 22ffvelrnd 6321 . . . . 5 (𝜑 → (𝑇𝑧) ∈ (0[,)+∞))
2513, 24sseldi 3585 . . . 4 (𝜑 → (𝑇𝑧) ∈ ℂ)
26 fveq2 6153 . . . 4 (𝑥 = 𝑧 → (𝑇𝑥) = (𝑇𝑧))
271, 2, 5, 10, 18, 22, 23, 25, 26gsumunsn 18287 . . 3 (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥))) = ((ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))) + (𝑇𝑧)))
2815, 7feqresmpt 6212 . . . 4 (𝜑 → (𝑇 ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥)))
2928oveq2d 6626 . . 3 (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥))))
3015, 8feqresmpt 6212 . . . . 5 (𝜑 → (𝑇𝐵) = (𝑥𝐵 ↦ (𝑇𝑥)))
3130oveq2d 6626 . . . 4 (𝜑 → (ℂfld Σg (𝑇𝐵)) = (ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))))
3231oveq1d 6625 . . 3 (𝜑 → ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧)) = ((ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))) + (𝑇𝑧)))
3327, 29, 323eqtr4d 2665 . 2 (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧)))
34 jensenlem.l . 2 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
35 jensenlem.s . . 3 𝑆 = (ℂfld Σg (𝑇𝐵))
3635oveq1i 6620 . 2 (𝑆 + (𝑇𝑧)) = ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧))
3733, 34, 363eqtr4g 2680 1 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  cun 3557  wss 3559  {csn 4153   class class class wbr 4618  cmpt 4678  cres 5081  wf 5848  cfv 5852  (class class class)co 6610  Fincfn 7906  cc 9885  cr 9886  0cc0 9887  1c1 9888   + caddc 9890   · cmul 9892  +∞cpnf 10022   < clt 10025  cle 10026  cmin 10217  [,)cico 12126  [,]cicc 12127   Σg cgsu 16029  CMndccmn 18121  Ringcrg 18475  fldccnfld 19674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-oi 8366  df-card 8716  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-ico 12130  df-fz 12276  df-fzo 12414  df-seq 12749  df-hash 13065  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-0g 16030  df-gsum 16031  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-grp 17353  df-minusg 17354  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-abl 18124  df-mgp 18418  df-ur 18430  df-ring 18477  df-cring 18478  df-cnfld 19675
This theorem is referenced by:  jensenlem2  24627
  Copyright terms: Public domain W3C validator