Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.16nn0 Structured version   Visualization version   GIF version

Theorem jm2.16nn0 36389
Description: Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 36388 if Yrm is redefined as described in rmyluc 36320. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.16nn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))

Proof of Theorem jm2.16nn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 11526 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 peano2zm 11250 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
31, 2syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∈ ℤ)
4 0z 11218 . . . . 5 0 ∈ ℤ
5 congid 36356 . . . . 5 (((𝐴 − 1) ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 − 1) ∥ (0 − 0))
63, 4, 5sylancl 692 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ (0 − 0))
7 rmy0 36312 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
87oveq1d 6539 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 0) − 0) = (0 − 0))
96, 8breqtrrd 4602 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0))
10 1z 11237 . . . . 5 1 ∈ ℤ
11 congid 36356 . . . . 5 (((𝐴 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴 − 1) ∥ (1 − 1))
123, 10, 11sylancl 692 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ (1 − 1))
13 rmy1 36313 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
1413oveq1d 6539 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 1) − 1) = (1 − 1))
1512, 14breqtrrd 4602 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1))
16 pm3.43 901 . . . 4 (((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))) ∧ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))))
171adantl 480 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
1817, 2syl 17 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∈ ℤ)
19 eluzel2 11521 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℤ)
2019adantl 480 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 2 ∈ ℤ)
21 simpr 475 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
22 nnz 11229 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
2322adantr 479 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
24 frmy 36297 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2524fovcl 6638 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2621, 23, 25syl2anc 690 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℤ)
2726, 17zmulcld 11317 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ)
2820, 27zmulcld 11317 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ)
29 zmulcl 11256 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑏 · 1) ∈ ℤ)
3023, 10, 29sylancl 692 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 · 1) ∈ ℤ)
3120, 30zmulcld 11317 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (2 · (𝑏 · 1)) ∈ ℤ)
3218, 28, 313jca 1234 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ))
33323adant3 1073 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ))
34 peano2zm 11250 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
3523, 34syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 − 1) ∈ ℤ)
3624fovcl 6638 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
3721, 35, 36syl2anc 690 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
3837, 35jca 552 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ))
39383adant3 1073 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ))
4018, 20, 203jca 1234 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ))
41403adant3 1073 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ))
4227, 30jca 552 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ))
43423adant3 1073 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ))
44 congid 36356 . . . . . . . . . . 11 (((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ) → (𝐴 − 1) ∥ (2 − 2))
4518, 20, 44syl2anc 690 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∥ (2 − 2))
46453adant3 1073 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (2 − 2))
4718, 26, 233jca 1234 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ))
48473adant3 1073 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ))
4917, 10jctir 558 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 ∈ ℤ ∧ 1 ∈ ℤ))
50493adant3 1073 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ ℤ ∧ 1 ∈ ℤ))
51 simp3r 1082 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))
52 iddvds 14776 . . . . . . . . . . . 12 ((𝐴 − 1) ∈ ℤ → (𝐴 − 1) ∥ (𝐴 − 1))
5318, 52syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∥ (𝐴 − 1))
54533adant3 1073 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (𝐴 − 1))
55 congmul 36352 . . . . . . . . . 10 ((((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏) ∧ (𝐴 − 1) ∥ (𝐴 − 1))) → (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))
5648, 50, 51, 54, 55syl112anc 1321 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))
57 congmul 36352 . . . . . . . . 9 ((((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ) ∧ ((𝐴 − 1) ∥ (2 − 2) ∧ (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))) → (𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))))
5841, 43, 46, 56, 57syl112anc 1321 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))))
59 simp3l 1081 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))
60 congsub 36355 . . . . . . . 8 ((((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ) ∧ ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ) ∧ ((𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))) → (𝐴 − 1) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
6133, 39, 58, 59, 60syl112anc 1321 . . . . . . 7 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
62 rmyluc 36320 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
6321, 23, 62syl2anc 690 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
64 nncn 10872 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → 𝑏 ∈ ℂ)
6564mulid1d 9910 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → (𝑏 · 1) = 𝑏)
6665oveq2d 6540 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → (2 · (𝑏 · 1)) = (2 · 𝑏))
67642timesd 11119 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → (2 · 𝑏) = (𝑏 + 𝑏))
6866, 67eqtrd 2640 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (2 · (𝑏 · 1)) = (𝑏 + 𝑏))
6968oveq1d 6539 . . . . . . . . . . 11 (𝑏 ∈ ℕ → ((2 · (𝑏 · 1)) − (𝑏 − 1)) = ((𝑏 + 𝑏) − (𝑏 − 1)))
70 1cnd 9909 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → 1 ∈ ℂ)
7164, 64, 70pnncand 10279 . . . . . . . . . . 11 (𝑏 ∈ ℕ → ((𝑏 + 𝑏) − (𝑏 − 1)) = (𝑏 + 1))
7269, 71eqtr2d 2641 . . . . . . . . . 10 (𝑏 ∈ ℕ → (𝑏 + 1) = ((2 · (𝑏 · 1)) − (𝑏 − 1)))
7372adantr 479 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) = ((2 · (𝑏 · 1)) − (𝑏 − 1)))
7463, 73oveq12d 6542 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
75743adant3 1073 . . . . . . 7 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
7661, 75breqtrrd 4602 . . . . . 6 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))
77763exp 1255 . . . . 5 (𝑏 ∈ ℕ → (𝐴 ∈ (ℤ‘2) → (((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏)) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
7877a2d 29 . . . 4 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
7916, 78syl5 33 . . 3 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))) ∧ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
80 oveq2 6532 . . . . . 6 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
81 id 22 . . . . . 6 (𝑎 = 0 → 𝑎 = 0)
8280, 81oveq12d 6542 . . . . 5 (𝑎 = 0 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 0) − 0))
8382breq2d 4586 . . . 4 (𝑎 = 0 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0)))
8483imbi2d 328 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0))))
85 oveq2 6532 . . . . . 6 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
86 id 22 . . . . . 6 (𝑎 = 1 → 𝑎 = 1)
8785, 86oveq12d 6542 . . . . 5 (𝑎 = 1 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 1) − 1))
8887breq2d 4586 . . . 4 (𝑎 = 1 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1)))
8988imbi2d 328 . . 3 (𝑎 = 1 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1))))
90 oveq2 6532 . . . . . 6 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
91 id 22 . . . . . 6 (𝑎 = (𝑏 − 1) → 𝑎 = (𝑏 − 1))
9290, 91oveq12d 6542 . . . . 5 (𝑎 = (𝑏 − 1) → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))
9392breq2d 4586 . . . 4 (𝑎 = (𝑏 − 1) → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))))
9493imbi2d 328 . . 3 (𝑎 = (𝑏 − 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))))
95 oveq2 6532 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
96 id 22 . . . . . 6 (𝑎 = 𝑏𝑎 = 𝑏)
9795, 96oveq12d 6542 . . . . 5 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 𝑏) − 𝑏))
9897breq2d 4586 . . . 4 (𝑎 = 𝑏 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏)))
9998imbi2d 328 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))))
100 oveq2 6532 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
101 id 22 . . . . . 6 (𝑎 = (𝑏 + 1) → 𝑎 = (𝑏 + 1))
102100, 101oveq12d 6542 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))
103102breq2d 4586 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1))))
104103imbi2d 328 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
105 oveq2 6532 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
106 id 22 . . . . . 6 (𝑎 = 𝑁𝑎 = 𝑁)
107105, 106oveq12d 6542 . . . . 5 (𝑎 = 𝑁 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 𝑁) − 𝑁))
108107breq2d 4586 . . . 4 (𝑎 = 𝑁 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)))
109108imbi2d 328 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))))
1109, 15, 79, 84, 89, 94, 99, 104, 1092nn0ind 36328 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)))
111110impcom 444 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4574  cfv 5787  (class class class)co 6524  0cc0 9789  1c1 9790   + caddc 9792   · cmul 9794  cmin 10114  cn 10864  2c2 10914  0cn0 11136  cz 11207  cuz 11516  cdvds 14764   Yrm crmy 36283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867  ax-addf 9868  ax-mulf 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-iin 4449  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-2o 7422  df-oadd 7425  df-omul 7426  df-er 7603  df-map 7720  df-pm 7721  df-ixp 7769  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-fi 8174  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-acn 8625  df-cda 8847  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-q 11618  df-rp 11662  df-xneg 11775  df-xadd 11776  df-xmul 11777  df-ioo 12003  df-ioc 12004  df-ico 12005  df-icc 12006  df-fz 12150  df-fzo 12287  df-fl 12407  df-mod 12483  df-seq 12616  df-exp 12675  df-fac 12875  df-bc 12904  df-hash 12932  df-shft 13598  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-limsup 13993  df-clim 14010  df-rlim 14011  df-sum 14208  df-ef 14580  df-sin 14582  df-cos 14583  df-pi 14585  df-dvds 14765  df-gcd 14998  df-numer 15224  df-denom 15225  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-ress 15645  df-plusg 15724  df-mulr 15725  df-starv 15726  df-sca 15727  df-vsca 15728  df-ip 15729  df-tset 15730  df-ple 15731  df-ds 15734  df-unif 15735  df-hom 15736  df-cco 15737  df-rest 15849  df-topn 15850  df-0g 15868  df-gsum 15869  df-topgen 15870  df-pt 15871  df-prds 15874  df-xrs 15928  df-qtop 15933  df-imas 15934  df-xps 15936  df-mre 16012  df-mrc 16013  df-acs 16015  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-submnd 17102  df-mulg 17307  df-cntz 17516  df-cmn 17961  df-psmet 19502  df-xmet 19503  df-met 19504  df-bl 19505  df-mopn 19506  df-fbas 19507  df-fg 19508  df-cnfld 19511  df-top 20460  df-bases 20461  df-topon 20462  df-topsp 20463  df-cld 20572  df-ntr 20573  df-cls 20574  df-nei 20651  df-lp 20689  df-perf 20690  df-cn 20780  df-cnp 20781  df-haus 20868  df-tx 21114  df-hmeo 21307  df-fil 21399  df-fm 21491  df-flim 21492  df-flf 21493  df-xms 21873  df-ms 21874  df-tms 21875  df-cncf 22417  df-limc 23350  df-dv 23351  df-log 24021  df-squarenn 36223  df-pell1qr 36224  df-pell14qr 36225  df-pell1234qr 36226  df-pellfund 36227  df-rmx 36284  df-rmy 36285
This theorem is referenced by:  jm2.27a  36390  jm2.27c  36392
  Copyright terms: Public domain W3C validator