Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.16nn0 Structured version   Visualization version   GIF version

Theorem jm2.16nn0 37888
Description: Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 37887 if Yrm is redefined as described in rmyluc 37819. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.16nn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))

Proof of Theorem jm2.16nn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 11735 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 peano2zm 11458 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
31, 2syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∈ ℤ)
4 0z 11426 . . . . 5 0 ∈ ℤ
5 congid 37855 . . . . 5 (((𝐴 − 1) ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 − 1) ∥ (0 − 0))
63, 4, 5sylancl 695 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ (0 − 0))
7 rmy0 37811 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
87oveq1d 6705 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 0) − 0) = (0 − 0))
96, 8breqtrrd 4713 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0))
10 1z 11445 . . . . 5 1 ∈ ℤ
11 congid 37855 . . . . 5 (((𝐴 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴 − 1) ∥ (1 − 1))
123, 10, 11sylancl 695 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ (1 − 1))
13 rmy1 37812 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
1413oveq1d 6705 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm 1) − 1) = (1 − 1))
1512, 14breqtrrd 4713 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1))
16 pm3.43 924 . . . 4 (((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))) ∧ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))))
171adantl 481 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
1817, 2syl 17 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∈ ℤ)
19 eluzel2 11730 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℤ)
2019adantl 481 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 2 ∈ ℤ)
21 simpr 476 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
22 nnz 11437 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
2322adantr 480 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
24 frmy 37796 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2524fovcl 6807 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
2621, 23, 25syl2anc 694 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℤ)
2726, 17zmulcld 11526 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ)
2820, 27zmulcld 11526 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ)
29 zmulcl 11464 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑏 · 1) ∈ ℤ)
3023, 10, 29sylancl 695 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 · 1) ∈ ℤ)
3120, 30zmulcld 11526 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (2 · (𝑏 · 1)) ∈ ℤ)
3218, 28, 313jca 1261 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ))
33323adant3 1101 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ))
34 peano2zm 11458 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → (𝑏 − 1) ∈ ℤ)
3523, 34syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 − 1) ∈ ℤ)
3624fovcl 6807 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 − 1) ∈ ℤ) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
3721, 35, 36syl2anc 694 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 − 1)) ∈ ℤ)
3837, 35jca 553 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ))
39383adant3 1101 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ))
4018, 20, 203jca 1261 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ))
41403adant3 1101 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ))
4227, 30jca 553 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ))
43423adant3 1101 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ))
44 congid 37855 . . . . . . . . . . 11 (((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ) → (𝐴 − 1) ∥ (2 − 2))
4518, 20, 44syl2anc 694 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∥ (2 − 2))
46453adant3 1101 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (2 − 2))
4718, 26, 233jca 1261 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ))
48473adant3 1101 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ))
4917, 10jctir 560 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 ∈ ℤ ∧ 1 ∈ ℤ))
50493adant3 1101 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ ℤ ∧ 1 ∈ ℤ))
51 simp3r 1110 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))
52 iddvds 15042 . . . . . . . . . . . 12 ((𝐴 − 1) ∈ ℤ → (𝐴 − 1) ∥ (𝐴 − 1))
5318, 52syl 17 . . . . . . . . . . 11 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 − 1) ∥ (𝐴 − 1))
54533adant3 1101 . . . . . . . . . 10 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (𝐴 − 1))
55 congmul 37851 . . . . . . . . . 10 ((((𝐴 − 1) ∈ ℤ ∧ (𝐴 Yrm 𝑏) ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏) ∧ (𝐴 − 1) ∥ (𝐴 − 1))) → (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))
5648, 50, 51, 54, 55syl112anc 1370 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))
57 congmul 37851 . . . . . . . . 9 ((((𝐴 − 1) ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (((𝐴 Yrm 𝑏) · 𝐴) ∈ ℤ ∧ (𝑏 · 1) ∈ ℤ) ∧ ((𝐴 − 1) ∥ (2 − 2) ∧ (𝐴 − 1) ∥ (((𝐴 Yrm 𝑏) · 𝐴) − (𝑏 · 1)))) → (𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))))
5841, 43, 46, 56, 57syl112anc 1370 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))))
59 simp3l 1109 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))
60 congsub 37854 . . . . . . . 8 ((((𝐴 − 1) ∈ ℤ ∧ (2 · ((𝐴 Yrm 𝑏) · 𝐴)) ∈ ℤ ∧ (2 · (𝑏 · 1)) ∈ ℤ) ∧ ((𝐴 Yrm (𝑏 − 1)) ∈ ℤ ∧ (𝑏 − 1) ∈ ℤ) ∧ ((𝐴 − 1) ∥ ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (2 · (𝑏 · 1))) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))) → (𝐴 − 1) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
6133, 39, 58, 59, 60syl112anc 1370 . . . . . . 7 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
62 rmyluc 37819 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
6321, 23, 62syl2anc 694 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) = ((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))))
64 nncn 11066 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → 𝑏 ∈ ℂ)
6564mulid1d 10095 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → (𝑏 · 1) = 𝑏)
6665oveq2d 6706 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → (2 · (𝑏 · 1)) = (2 · 𝑏))
67642timesd 11313 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → (2 · 𝑏) = (𝑏 + 𝑏))
6866, 67eqtrd 2685 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (2 · (𝑏 · 1)) = (𝑏 + 𝑏))
6968oveq1d 6705 . . . . . . . . . . 11 (𝑏 ∈ ℕ → ((2 · (𝑏 · 1)) − (𝑏 − 1)) = ((𝑏 + 𝑏) − (𝑏 − 1)))
70 1cnd 10094 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → 1 ∈ ℂ)
7164, 64, 70pnncand 10469 . . . . . . . . . . 11 (𝑏 ∈ ℕ → ((𝑏 + 𝑏) − (𝑏 − 1)) = (𝑏 + 1))
7269, 71eqtr2d 2686 . . . . . . . . . 10 (𝑏 ∈ ℕ → (𝑏 + 1) = ((2 · (𝑏 · 1)) − (𝑏 − 1)))
7372adantr 480 . . . . . . . . 9 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) = ((2 · (𝑏 · 1)) − (𝑏 − 1)))
7463, 73oveq12d 6708 . . . . . . . 8 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
75743adant3 1101 . . . . . . 7 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)) = (((2 · ((𝐴 Yrm 𝑏) · 𝐴)) − (𝐴 Yrm (𝑏 − 1))) − ((2 · (𝑏 · 1)) − (𝑏 − 1))))
7661, 75breqtrrd 4713 . . . . . 6 ((𝑏 ∈ ℕ ∧ 𝐴 ∈ (ℤ‘2) ∧ ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))
77763exp 1283 . . . . 5 (𝑏 ∈ ℕ → (𝐴 ∈ (ℤ‘2) → (((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏)) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
7877a2d 29 . . . 4 (𝑏 ∈ ℕ → ((𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)) ∧ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
7916, 78syl5 34 . . 3 (𝑏 ∈ ℕ → (((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))) ∧ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))) → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
80 oveq2 6698 . . . . . 6 (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0))
81 id 22 . . . . . 6 (𝑎 = 0 → 𝑎 = 0)
8280, 81oveq12d 6708 . . . . 5 (𝑎 = 0 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 0) − 0))
8382breq2d 4697 . . . 4 (𝑎 = 0 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0)))
8483imbi2d 329 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 0) − 0))))
85 oveq2 6698 . . . . . 6 (𝑎 = 1 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 1))
86 id 22 . . . . . 6 (𝑎 = 1 → 𝑎 = 1)
8785, 86oveq12d 6708 . . . . 5 (𝑎 = 1 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 1) − 1))
8887breq2d 4697 . . . 4 (𝑎 = 1 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1)))
8988imbi2d 329 . . 3 (𝑎 = 1 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 1) − 1))))
90 oveq2 6698 . . . . . 6 (𝑎 = (𝑏 − 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 − 1)))
91 id 22 . . . . . 6 (𝑎 = (𝑏 − 1) → 𝑎 = (𝑏 − 1))
9290, 91oveq12d 6708 . . . . 5 (𝑎 = (𝑏 − 1) → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))
9392breq2d 4697 . . . 4 (𝑎 = (𝑏 − 1) → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1))))
9493imbi2d 329 . . 3 (𝑎 = (𝑏 − 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 − 1)) − (𝑏 − 1)))))
95 oveq2 6698 . . . . . 6 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
96 id 22 . . . . . 6 (𝑎 = 𝑏𝑎 = 𝑏)
9795, 96oveq12d 6708 . . . . 5 (𝑎 = 𝑏 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 𝑏) − 𝑏))
9897breq2d 4697 . . . 4 (𝑎 = 𝑏 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏)))
9998imbi2d 329 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑏) − 𝑏))))
100 oveq2 6698 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
101 id 22 . . . . . 6 (𝑎 = (𝑏 + 1) → 𝑎 = (𝑏 + 1))
102100, 101oveq12d 6708 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))
103102breq2d 4697 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1))))
104103imbi2d 329 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm (𝑏 + 1)) − (𝑏 + 1)))))
105 oveq2 6698 . . . . . 6 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
106 id 22 . . . . . 6 (𝑎 = 𝑁𝑎 = 𝑁)
107105, 106oveq12d 6708 . . . . 5 (𝑎 = 𝑁 → ((𝐴 Yrm 𝑎) − 𝑎) = ((𝐴 Yrm 𝑁) − 𝑁))
108107breq2d 4697 . . . 4 (𝑎 = 𝑁 → ((𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎) ↔ (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)))
109108imbi2d 329 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑎) − 𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))))
1109, 15, 79, 84, 89, 94, 99, 104, 1092nn0ind 37827 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁)))
111110impcom 445 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 − 1) ∥ ((𝐴 Yrm 𝑁) − 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cmin 10304  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  cdvds 15027   Yrm crmy 37782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-numer 15490  df-denom 15491  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-squarenn 37722  df-pell1qr 37723  df-pell14qr 37724  df-pell1234qr 37725  df-pellfund 37726  df-rmx 37783  df-rmy 37784
This theorem is referenced by:  jm2.27a  37889  jm2.27c  37891
  Copyright terms: Public domain W3C validator