Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17c Structured version   Visualization version   GIF version

Theorem jm2.17c 37009
Description: Second half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 15-Oct-2014.)
Assertion
Ref Expression
jm2.17c ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) < ((2 · 𝐴)↑(𝑁 + 1)))

Proof of Theorem jm2.17c
StepHypRef Expression
1 2re 11034 . . . . . 6 2 ∈ ℝ
2 eluzelre 11642 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
32adantr 481 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
4 remulcl 9965 . . . . . 6 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
51, 3, 4sylancr 694 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · 𝐴) ∈ ℝ)
6 nnz 11343 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
76adantl 482 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
87peano2zd 11429 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℤ)
9 frmy 36959 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
109fovcl 6718 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℤ)
1110zred 11426 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℝ)
128, 11syldan 487 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℝ)
135, 12remulcld 10014 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ∈ ℝ)
14 nncn 10972 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1514adantl 482 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
16 ax-1cn 9938 . . . . . . 7 1 ∈ ℂ
17 pncan 10231 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
1815, 16, 17sylancl 693 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) − 1) = 𝑁)
1918oveq2d 6620 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) − 1)) = (𝐴 Yrm 𝑁))
209fovcl 6718 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
2120zred 11426 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℝ)
226, 21sylan2 491 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℝ)
2319, 22eqeltrd 2698 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) − 1)) ∈ ℝ)
2413, 23resubcld 10402 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) ∈ ℝ)
25 nnnn0 11243 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2625adantl 482 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
275, 26reexpcld 12965 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑𝑁) ∈ ℝ)
285, 27remulcld 10014 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)) ∈ ℝ)
29 rmy0 36974 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
3029adantr 481 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0)
31 nngt0 10993 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
3231adantl 482 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
33 simpl 473 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
34 0zd 11333 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ∈ ℤ)
35 ltrmy 36999 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
3633, 34, 7, 35syl3anc 1323 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
3732, 36mpbid 222 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))
3830, 37eqbrtrrd 4637 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁))
3938, 19breqtrrd 4641 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm ((𝑁 + 1) − 1)))
4023, 13ltsubposd 10557 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < (𝐴 Yrm ((𝑁 + 1) − 1)) ↔ (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1)))))
4139, 40mpbid 222 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))))
42 jm2.17b 37008 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))
4325, 42sylan2 491 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))
44 2nn 11129 . . . . . . . 8 2 ∈ ℕ
45 eluz2nn 11670 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
46 nnmulcl 10987 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
4744, 45, 46sylancr 694 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℕ)
4847nngt0d 11008 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 0 < (2 · 𝐴))
4948adantr 481 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (2 · 𝐴))
50 lemul2 10820 . . . . 5 (((𝐴 Yrm (𝑁 + 1)) ∈ ℝ ∧ ((2 · 𝐴)↑𝑁) ∈ ℝ ∧ ((2 · 𝐴) ∈ ℝ ∧ 0 < (2 · 𝐴))) → ((𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁))))
5112, 27, 5, 49, 50syl112anc 1327 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁))))
5243, 51mpbid 222 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
5324, 13, 28, 41, 52ltletrd 10141 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
54 rmyluc2 36983 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑁 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))))
558, 54syldan 487 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))))
565recnd 10012 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
5756, 26expp1d 12949 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑(𝑁 + 1)) = (((2 · 𝐴)↑𝑁) · (2 · 𝐴)))
5827recnd 10012 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑𝑁) ∈ ℂ)
5958, 56mulcomd 10005 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴)↑𝑁) · (2 · 𝐴)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
6057, 59eqtrd 2655 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑(𝑁 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
6153, 55, 603brtr4d 4645 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) < ((2 · 𝐴)↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210  cn 10964  2c2 11014  0cn0 11236  cz 11321  cuz 11631  cexp 12800   Yrm crmy 36945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-xnn0 11308  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-dvds 14908  df-gcd 15141  df-numer 15367  df-denom 15368  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-log 24207  df-squarenn 36885  df-pell1qr 36886  df-pell14qr 36887  df-pell1234qr 36888  df-pellfund 36889  df-rmx 36946  df-rmy 36947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator