Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19 Structured version   Visualization version   GIF version

Theorem jm2.19 37379
Description: Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
jm2.19 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))

Proof of Theorem jm2.19
StepHypRef Expression
1 rmyeq0 37339 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0))
213adant2 1078 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0))
3 0dvds 14983 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
433ad2ant3 1082 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁𝑁 = 0))
5 frmy 37298 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
65fovcl 6750 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
763adant2 1078 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
8 0dvds 14983 . . . . . 6 ((𝐴 Yrm 𝑁) ∈ ℤ → (0 ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑁) = 0))
97, 8syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑁) = 0))
102, 4, 93bitr4d 300 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 ∥ (𝐴 Yrm 𝑁)))
1110adantr 481 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 ∥ 𝑁 ↔ 0 ∥ (𝐴 Yrm 𝑁)))
12 simpr 477 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
1312breq1d 4654 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁 ↔ 0 ∥ 𝑁))
1412oveq2d 6651 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 𝑀) = (𝐴 Yrm 0))
15 simpl1 1062 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝐴 ∈ (ℤ‘2))
16 rmy0 37313 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1715, 16syl 17 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 0) = 0)
1814, 17eqtrd 2654 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 𝑀) = 0)
1918breq1d 4654 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ 0 ∥ (𝐴 Yrm 𝑁)))
2011, 13, 193bitr4d 300 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
215fovcl 6750 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
22213adant3 1079 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
23 dvds0 14978 . . . . . . . 8 ((𝐴 Yrm 𝑀) ∈ ℤ → (𝐴 Yrm 𝑀) ∥ 0)
2422, 23syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ 0)
25163ad2ant1 1080 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 0) = 0)
2624, 25breqtrrd 4672 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 0))
27 oveq2 6643 . . . . . . 7 ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = (𝐴 Yrm 0))
2827breq2d 4656 . . . . . 6 ((𝑁 mod (abs‘𝑀)) = 0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 0)))
2926, 28syl5ibrcom 237 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
3029adantr 481 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
31 zre 11366 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
32313ad2ant3 1082 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
3332ad2antrr 761 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑁 ∈ ℝ)
34 zcn 11367 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
35343ad2ant2 1081 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
3635ad2antrr 761 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ∈ ℂ)
37 simplr 791 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ≠ 0)
3836, 37absrpcld 14168 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℝ+)
39 modlt 12662 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → (𝑁 mod (abs‘𝑀)) < (abs‘𝑀))
4033, 38, 39syl2anc 692 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) < (abs‘𝑀))
41 simpll1 1098 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝐴 ∈ (ℤ‘2))
42 simpll3 1100 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑁 ∈ ℤ)
43 simpll2 1099 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ∈ ℤ)
44 nnabscl 14046 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
4543, 37, 44syl2anc 692 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℕ)
4642, 45zmodcld 12674 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℕ0)
47 nn0abscl 14033 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
48473ad2ant2 1081 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℕ0)
4948ad2antrr 761 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℕ0)
50 ltrmynn0 37334 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℕ0 ∧ (abs‘𝑀) ∈ ℕ0) → ((𝑁 mod (abs‘𝑀)) < (abs‘𝑀) ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀))))
5141, 46, 49, 50syl3anc 1324 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) < (abs‘𝑀) ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀))))
5240, 51mpbid 222 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀)))
5346nn0zd 11465 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℤ)
54 rmyabs 37344 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))))
5541, 53, 54syl2anc 692 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))))
5633, 38modcld 12657 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
57 modge0 12661 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → 0 ≤ (𝑁 mod (abs‘𝑀)))
5833, 38, 57syl2anc 692 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 0 ≤ (𝑁 mod (abs‘𝑀)))
5956, 58absidd 14142 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝑁 mod (abs‘𝑀))) = (𝑁 mod (abs‘𝑀)))
6059oveq2d 6651 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
6155, 60eqtrd 2654 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
62 rmyabs 37344 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
6341, 43, 62syl2anc 692 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
6452, 61, 633brtr4d 4676 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) < (abs‘(𝐴 Yrm 𝑀)))
655fovcl 6750 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ)
6641, 53, 65syl2anc 692 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ)
67 nn0abscl 14033 . . . . . . . . . . 11 ((𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℕ0)
6866, 67syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℕ0)
6968nn0red 11337 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℝ)
7022ad2antrr 761 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm 𝑀) ∈ ℤ)
71 nn0abscl 14033 . . . . . . . . . . 11 ((𝐴 Yrm 𝑀) ∈ ℤ → (abs‘(𝐴 Yrm 𝑀)) ∈ ℕ0)
7270, 71syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) ∈ ℕ0)
7372nn0red 11337 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) ∈ ℝ)
7469, 73ltnled 10169 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) < (abs‘(𝐴 Yrm 𝑀)) ↔ ¬ (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
7564, 74mpbid 222 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ¬ (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
76 simpr 477 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ≠ 0)
77 rmyeq0 37339 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = 0))
7841, 53, 77syl2anc 692 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = 0))
7978necon3bid 2835 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) ≠ 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0))
8076, 79mpbid 222 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0)
81 dvdsleabs2 15015 . . . . . . . 8 (((𝐴 Yrm 𝑀) ∈ ℤ ∧ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ ∧ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
8270, 66, 80, 81syl3anc 1324 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
8375, 82mtod 189 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ¬ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
8483ex 450 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) ≠ 0 → ¬ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
8584necon4ad 2810 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (𝑁 mod (abs‘𝑀)) = 0))
8630, 85impbid 202 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
87 simpl2 1063 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℤ)
88 simpl3 1064 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℤ)
89 simpr 477 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
90 dvdsabsmod0 37373 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0))
9187, 88, 89, 90syl3anc 1324 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0))
92 simpl1 1062 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐴 ∈ (ℤ‘2))
9332adantr 481 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℝ)
94 zre 11366 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
95943ad2ant2 1081 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
9695adantr 481 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ)
97 modabsdifz 37372 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
9893, 96, 89, 97syl3anc 1324 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
9998znegcld 11469 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → -((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
100 jm2.19lem4 37378 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ -((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
10192, 87, 88, 99, 100syl121anc 1329 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
10232recnd 10053 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
103102adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℂ)
10435adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
105104, 89absrpcld 14168 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ+)
10693, 105modcld 12657 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
107106recnd 10053 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℂ)
108103, 107subcld 10377 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℂ)
109108, 104, 89divcld 10786 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℂ)
110109, 104mulneg1d 10468 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) = -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))
111110oveq2d 6651 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 + -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
112109, 104mulcld 10045 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) ∈ ℂ)
113103, 112negsubd 10383 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 + -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
114108, 104, 89divcan1d 10787 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) = (𝑁 − (𝑁 mod (abs‘𝑀))))
115114oveq2d 6651 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 − (𝑁 − (𝑁 mod (abs‘𝑀)))))
116103, 107nncand 10382 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 − (𝑁 mod (abs‘𝑀)))) = (𝑁 mod (abs‘𝑀)))
117115, 116eqtrd 2654 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 mod (abs‘𝑀)))
118111, 113, 1173eqtrrd 2659 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) = (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
119118oveq2d 6651 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))))
120119breq2d 4656 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
121101, 120bitr4d 271 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
12286, 91, 1213bitr4d 300 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
12320, 122pm2.61dane 2878 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791   class class class wbr 4644  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921   + caddc 9924   · cmul 9926   < clt 10059  cle 10060  cmin 10251  -cneg 10252   / cdiv 10669  cn 11005  2c2 11055  0cn0 11277  cz 11362  cuz 11672  +crp 11817   mod cmo 12651  abscabs 13955  cdvds 14964   Yrm crmy 37284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-acn 8753  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-bc 13073  df-hash 13101  df-shft 13788  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-sum 14398  df-ef 14779  df-sin 14781  df-cos 14782  df-pi 14784  df-dvds 14965  df-gcd 15198  df-numer 15424  df-denom 15425  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-limc 23611  df-dv 23612  df-log 24284  df-squarenn 37224  df-pell1qr 37225  df-pell14qr 37226  df-pell1234qr 37227  df-pellfund 37228  df-rmx 37285  df-rmy 37286
This theorem is referenced by:  jm2.20nn  37383
  Copyright terms: Public domain W3C validator