Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.22 Structured version   Visualization version   GIF version

Theorem jm2.22 37069
Description: Lemma for jm2.20nn 37071. Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
jm2.22 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
Distinct variable groups:   𝐴,𝑖,𝑥   𝑖,𝑁,𝑥   𝑖,𝐽,𝑥

Proof of Theorem jm2.22
StepHypRef Expression
1 nn0z 11351 . . . . 5 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
2 jm2.21 37068 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽))
31, 2syl3an3 1358 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽))
4 frmx 36985 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
54fovcl 6725 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
653adant3 1079 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℕ0)
76nn0cnd 11304 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℂ)
8 eluzelz 11648 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
9 zsqcl 12881 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
10 peano2zm 11371 . . . . . . . . . 10 ((𝐴↑2) ∈ ℤ → ((𝐴↑2) − 1) ∈ ℤ)
118, 9, 103syl 18 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
12113ad2ant1 1080 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℤ)
1312zcnd 11434 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℂ)
1413sqrtcld 14117 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
15 frmy 36986 . . . . . . . . 9 Yrm :((ℤ‘2) × ℤ)⟶ℤ
1615fovcl 6725 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
17163adant3 1079 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℤ)
1817zcnd 11434 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℂ)
1914, 18mulcld 10011 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
20 simp3 1061 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐽 ∈ ℕ0)
21 binom 14494 . . . . 5 (((𝐴 Xrm 𝑁) ∈ ℂ ∧ ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽) = Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
227, 19, 20, 21syl3anc 1323 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽) = Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
23 rabnc 3941 . . . . . . 7 ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∩ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) = ∅
2423a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∩ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) = ∅)
25 rabxm 3940 . . . . . . 7 (0...𝐽) = ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∪ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥})
2625a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (0...𝐽) = ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∪ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}))
27 fzfid 12719 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (0...𝐽) ∈ Fin)
28 simpl3 1064 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝐽 ∈ ℕ0)
29 elfzelz 12291 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℤ)
3029adantl 482 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℤ)
31 bccl 13056 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑖 ∈ ℤ) → (𝐽C𝑖) ∈ ℕ0)
3231nn0zd 11431 . . . . . . . . 9 ((𝐽 ∈ ℕ0𝑖 ∈ ℤ) → (𝐽C𝑖) ∈ ℤ)
3328, 30, 32syl2anc 692 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽C𝑖) ∈ ℤ)
3433zcnd 11434 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽C𝑖) ∈ ℂ)
356nn0zd 11431 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℤ)
3635adantr 481 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Xrm 𝑁) ∈ ℤ)
3736zcnd 11434 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Xrm 𝑁) ∈ ℂ)
38 fznn0sub 12322 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → (𝐽𝑖) ∈ ℕ0)
3938adantl 482 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽𝑖) ∈ ℕ0)
4037, 39expcld 12955 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℂ)
4112adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴↑2) − 1) ∈ ℤ)
4241zcnd 11434 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴↑2) − 1) ∈ ℂ)
4342sqrtcld 14117 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
4417adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Yrm 𝑁) ∈ ℤ)
4544zcnd 11434 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Yrm 𝑁) ∈ ℂ)
4643, 45mulcld 10011 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
47 elfznn0 12381 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℕ0)
4847adantl 482 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℕ0)
4946, 48expcld 12955 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) ∈ ℂ)
5040, 49mulcld 10011 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)) ∈ ℂ)
5134, 50mulcld 10011 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℂ)
5224, 26, 27, 51fsumsplit 14411 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))))
53 fzfi 12718 . . . . . . . . . 10 (0...𝐽) ∈ Fin
54 ssrab2 3671 . . . . . . . . . 10 {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ⊆ (0...𝐽)
55 ssfi 8131 . . . . . . . . . 10 (((0...𝐽) ∈ Fin ∧ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ⊆ (0...𝐽)) → {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin)
5653, 54, 55mp2an 707 . . . . . . . . 9 {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin
5756a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin)
58 breq2 4622 . . . . . . . . . . 11 (𝑥 = 𝑖 → (2 ∥ 𝑥 ↔ 2 ∥ 𝑖))
5958notbid 308 . . . . . . . . . 10 (𝑥 = 𝑖 → (¬ 2 ∥ 𝑥 ↔ ¬ 2 ∥ 𝑖))
6059elrab 3350 . . . . . . . . 9 (𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ↔ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖))
6134adantrr 752 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℂ)
6240adantrr 752 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℂ)
63 zexpcl 12822 . . . . . . . . . . . . . . 15 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 𝑖 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
6417, 47, 63syl2an 494 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
6564zcnd 11434 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℂ)
6665adantrr 752 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℂ)
6742adantrr 752 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴↑2) − 1) ∈ ℂ)
6829adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℤ)
69 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 2 ∥ 𝑖)
70 1zzd 11359 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 1 ∈ ℤ)
71 n2dvds1 15035 . . . . . . . . . . . . . . . . . 18 ¬ 2 ∥ 1
7271a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 2 ∥ 1)
73 omoe 15019 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑖 − 1))
7468, 69, 70, 72, 73syl22anc 1324 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∥ (𝑖 − 1))
75 2z 11360 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
7675a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∈ ℤ)
77 2ne0 11064 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
7877a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ≠ 0)
79 peano2zm 11371 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℤ → (𝑖 − 1) ∈ ℤ)
8029, 79syl 17 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℤ)
8180adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℤ)
82 dvdsval2 14917 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑖 − 1) ∈ ℤ) → (2 ∥ (𝑖 − 1) ↔ ((𝑖 − 1) / 2) ∈ ℤ))
8376, 78, 81, 82syl3anc 1323 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (2 ∥ (𝑖 − 1) ↔ ((𝑖 − 1) / 2) ∈ ℤ))
8474, 83mpbid 222 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ((𝑖 − 1) / 2) ∈ ℤ)
8580zred 11433 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℝ)
8685adantr 481 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℝ)
87 dvds0 14928 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℤ → 2 ∥ 0)
8875, 87ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 2 ∥ 0
89 breq2 4622 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (2 ∥ 𝑖 ↔ 2 ∥ 0))
9088, 89mpbiri 248 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → 2 ∥ 𝑖)
9190con3i 150 . . . . . . . . . . . . . . . . . . . 20 (¬ 2 ∥ 𝑖 → ¬ 𝑖 = 0)
9291adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 𝑖 = 0)
9347adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℕ0)
94 elnn0 11245 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℕ ∨ 𝑖 = 0))
9593, 94sylib 208 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 ∈ ℕ ∨ 𝑖 = 0))
96 orel2 398 . . . . . . . . . . . . . . . . . . 19 𝑖 = 0 → ((𝑖 ∈ ℕ ∨ 𝑖 = 0) → 𝑖 ∈ ℕ))
9792, 95, 96sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℕ)
98 nnm1nn0 11285 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ → (𝑖 − 1) ∈ ℕ0)
9997, 98syl 17 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℕ0)
10099nn0ge0d 11305 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 ≤ (𝑖 − 1))
101 2re 11041 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
102101a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∈ ℝ)
103 2pos 11063 . . . . . . . . . . . . . . . . 17 0 < 2
104103a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 < 2)
105 divge0 10843 . . . . . . . . . . . . . . . 16 ((((𝑖 − 1) ∈ ℝ ∧ 0 ≤ (𝑖 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑖 − 1) / 2))
10686, 100, 102, 104, 105syl22anc 1324 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 ≤ ((𝑖 − 1) / 2))
107 elnn0z 11341 . . . . . . . . . . . . . . 15 (((𝑖 − 1) / 2) ∈ ℕ0 ↔ (((𝑖 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑖 − 1) / 2)))
10884, 106, 107sylanbrc 697 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ((𝑖 − 1) / 2) ∈ ℕ0)
109108adantl 482 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝑖 − 1) / 2) ∈ ℕ0)
11067, 109expcld 12955 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℂ)
11166, 110mulcld 10011 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) ∈ ℂ)
11262, 111mulcld 10011 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) ∈ ℂ)
11361, 112mulcld 10011 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℂ)
11460, 113sylan2b 492 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℂ)
11557, 14, 114fsummulc2 14451 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
11643adantrr 752 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
117116, 61, 112mul12d 10196 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
118116, 62, 111mul12d 10196 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
11943, 48expcld 12955 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((√‘((𝐴↑2) − 1))↑𝑖) ∈ ℂ)
120119adantrr 752 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) ∈ ℂ)
12166, 120mulcomd 10012 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
122116, 66, 110mul12d 10196 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))
123 2nn0 11260 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ0
124123a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ∈ ℕ0)
125116, 109, 124expmuld 12958 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · ((𝑖 − 1) / 2))) = (((√‘((𝐴↑2) − 1))↑2)↑((𝑖 − 1) / 2)))
12680zcnd 11434 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℂ)
127126ad2antrl 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝑖 − 1) ∈ ℂ)
128 2cnd 11044 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ∈ ℂ)
12977a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ≠ 0)
130127, 128, 129divcan2d 10754 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (2 · ((𝑖 − 1) / 2)) = (𝑖 − 1))
131130oveq2d 6626 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · ((𝑖 − 1) / 2))) = ((√‘((𝐴↑2) − 1))↑(𝑖 − 1)))
13267sqsqrtd 14119 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑2) = ((𝐴↑2) − 1))
133132oveq1d 6625 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑2)↑((𝑖 − 1) / 2)) = (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))
134125, 131, 1333eqtr3rd 2664 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) = ((√‘((𝐴↑2) − 1))↑(𝑖 − 1)))
135134oveq1d 6625 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) · (√‘((𝐴↑2) − 1))) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
136116, 110mulcomd 10012 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) = ((((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) · (√‘((𝐴↑2) − 1))))
13797adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 𝑖 ∈ ℕ)
138 expm1t 12835 . . . . . . . . . . . . . . . . . 18 (((√‘((𝐴↑2) − 1)) ∈ ℂ ∧ 𝑖 ∈ ℕ) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
139116, 137, 138syl2anc 692 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
140135, 136, 1393eqtr4d 2665 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) = ((√‘((𝐴↑2) − 1))↑𝑖))
141140oveq2d 6626 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)))
142122, 141eqtrd 2655 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)))
14343, 45, 48mulexpd 12970 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
144143adantrr 752 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
145121, 142, 1443eqtr4d 2665 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))
146145oveq2d 6626 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))
147118, 146eqtrd 2655 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))
148147oveq2d 6626 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
149117, 148eqtrd 2655 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
15060, 149sylan2b 492 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
151150sumeq2dv 14374 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
152115, 151eqtr2d 2656 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
153152oveq2d 6626 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
15452, 153eqtrd 2655 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
1553, 22, 1543eqtrd 2659 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
156 rmspecsqrtnq 36977 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
1571563ad2ant1 1080 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
158 nn0ssq 11747 . . . . 5 0 ⊆ ℚ
159 simp1 1059 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
160 simp2 1060 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝑁 ∈ ℤ)
16113ad2ant3 1082 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐽 ∈ ℤ)
162160, 161zmulcld 11439 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝑁 · 𝐽) ∈ ℤ)
1634fovcl 6725 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · 𝐽) ∈ ℤ) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℕ0)
164159, 162, 163syl2anc 692 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℕ0)
165158, 164sseldi 3585 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℚ)
166 zssq 11746 . . . . 5 ℤ ⊆ ℚ
16715fovcl 6725 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · 𝐽) ∈ ℤ) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℤ)
168159, 162, 167syl2anc 692 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℤ)
169166, 168sseldi 3585 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℚ)
170 ssrab2 3671 . . . . . . . 8 {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ⊆ (0...𝐽)
171 ssfi 8131 . . . . . . . 8 (((0...𝐽) ∈ Fin ∧ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ⊆ (0...𝐽)) → {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin)
17253, 170, 171mp2an 707 . . . . . . 7 {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin
173172a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin)
17458elrab 3350 . . . . . . 7 (𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ↔ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖))
17533adantrr 752 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℤ)
176 zexpcl 12822 . . . . . . . . . . 11 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐽𝑖) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
17736, 39, 176syl2anc 692 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
178177adantrr 752 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
17943adantrr 752 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
18045adantrr 752 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝐴 Yrm 𝑁) ∈ ℂ)
18147ad2antrl 763 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 𝑖 ∈ ℕ0)
182179, 180, 181mulexpd 12970 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
18329zcnd 11434 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℂ)
184183adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℂ)
185 2cnd 11044 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 2 ∈ ℂ)
18677a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 2 ≠ 0)
187184, 185, 186divcan2d 10754 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (2 · (𝑖 / 2)) = 𝑖)
188187eqcomd 2627 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 = (2 · (𝑖 / 2)))
189188adantrr 752 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 𝑖 = (2 · (𝑖 / 2)))
190189oveq2d 6626 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = ((√‘((𝐴↑2) − 1))↑(2 · (𝑖 / 2))))
19175a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 2 ∈ ℤ)
19277a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 2 ≠ 0)
193 nn0z 11351 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
194 dvdsval2 14917 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑖 ∈ ℤ) → (2 ∥ 𝑖 ↔ (𝑖 / 2) ∈ ℤ))
195191, 192, 193, 194syl3anc 1323 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0 → (2 ∥ 𝑖 ↔ (𝑖 / 2) ∈ ℤ))
196195biimpa 501 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℤ)
197 nn0re 11252 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
198197adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 𝑖 ∈ ℝ)
199 nn0ge0 11269 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 0 ≤ 𝑖)
200199adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 ≤ 𝑖)
201101a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 2 ∈ ℝ)
202103a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 < 2)
203 divge0 10843 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝑖 / 2))
204198, 200, 201, 202, 203syl22anc 1324 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 ≤ (𝑖 / 2))
205 elnn0z 11341 . . . . . . . . . . . . . . . . 17 ((𝑖 / 2) ∈ ℕ0 ↔ ((𝑖 / 2) ∈ ℤ ∧ 0 ≤ (𝑖 / 2)))
206196, 204, 205sylanbrc 697 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℕ0)
20747, 206sylan 488 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℕ0)
208207adantl 482 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝑖 / 2) ∈ ℕ0)
209123a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 2 ∈ ℕ0)
210179, 208, 209expmuld 12958 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · (𝑖 / 2))) = (((√‘((𝐴↑2) − 1))↑2)↑(𝑖 / 2)))
21142adantrr 752 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴↑2) − 1) ∈ ℂ)
212211sqsqrtd 14119 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑2) = ((𝐴↑2) − 1))
213212oveq1d 6625 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑2)↑(𝑖 / 2)) = (((𝐴↑2) − 1)↑(𝑖 / 2)))
214190, 210, 2133eqtrd 2659 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((𝐴↑2) − 1)↑(𝑖 / 2)))
215214oveq1d 6625 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)) = ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)))
216182, 215eqtrd 2655 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)))
217 zexpcl 12822 . . . . . . . . . . . 12 ((((𝐴↑2) − 1) ∈ ℤ ∧ (𝑖 / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑(𝑖 / 2)) ∈ ℤ)
21812, 207, 217syl2an 494 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑(𝑖 / 2)) ∈ ℤ)
21964adantrr 752 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
220218, 219zmulcld 11439 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)) ∈ ℤ)
221216, 220eqeltrd 2698 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) ∈ ℤ)
222178, 221zmulcld 11439 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)) ∈ ℤ)
223175, 222zmulcld 11439 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
224174, 223sylan2b 492 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
225173, 224fsumzcl 14406 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
226166, 225sseldi 3585 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℚ)
22733adantrr 752 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℤ)
228177adantrr 752 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
22964adantrr 752 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
230 zexpcl 12822 . . . . . . . . . . 11 ((((𝐴↑2) − 1) ∈ ℤ ∧ ((𝑖 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℤ)
23112, 108, 230syl2an 494 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℤ)
232229, 231zmulcld 11439 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) ∈ ℤ)
233228, 232zmulcld 11439 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) ∈ ℤ)
234227, 233zmulcld 11439 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
23560, 234sylan2b 492 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
23657, 235fsumzcl 14406 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
237166, 236sseldi 3585 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℚ)
238 qirropth 36980 . . . 4 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm (𝑁 · 𝐽)) ∈ ℚ ∧ (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℚ) ∧ (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℚ ∧ Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℚ)) → (((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))) ↔ ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
239157, 165, 169, 226, 237, 238syl122anc 1332 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))) ↔ ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
240155, 239mpbid 222 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
241240simprd 479 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  {crab 2911  cdif 3556  cun 3557  cin 3558  wss 3559  c0 3896   class class class wbr 4618  cfv 5852  (class class class)co 6610  Fincfn 7906  cc 9885  cr 9886  0cc0 9887  1c1 9888   + caddc 9890   · cmul 9892   < clt 10025  cle 10026  cmin 10217   / cdiv 10635  cn 10971  2c2 11021  0cn0 11243  cz 11328  cuz 11638  cq 11739  ...cfz 12275  cexp 12807  Ccbc 13036  csqrt 13914  Σcsu 14357  cdvds 14914   Xrm crmx 36971   Yrm crmy 36972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-acn 8719  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-xnn0 11315  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ioc 12129  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-fac 13008  df-bc 13037  df-hash 13065  df-shft 13748  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-limsup 14143  df-clim 14160  df-rlim 14161  df-sum 14358  df-ef 14730  df-sin 14732  df-cos 14733  df-pi 14735  df-dvds 14915  df-gcd 15148  df-numer 15374  df-denom 15375  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-haus 21038  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-limc 23549  df-dv 23550  df-log 24220  df-squarenn 36912  df-pell1qr 36913  df-pell14qr 36914  df-pell1234qr 36915  df-pellfund 36916  df-rmx 36973  df-rmy 36974
This theorem is referenced by:  jm2.23  37070
  Copyright terms: Public domain W3C validator