Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.24 Structured version   Visualization version   GIF version

Theorem jm2.24 37010
Description: Lemma 2.24 of [JonesMatijasevic] p. 697 extended to . Could be eliminated with a more careful proof of jm2.26lem3 37048. (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.24 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))

Proof of Theorem jm2.24
StepHypRef Expression
1 simpll 789 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝐴 ∈ (ℤ‘2))
2 peano2zm 11364 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
32ad2antlr 762 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝑁 − 1) ∈ ℤ)
4 frmy 36959 . . . . . . 7 Yrm :((ℤ‘2) × ℤ)⟶ℤ
54fovcl 6718 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
61, 3, 5syl2anc 692 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
76zred 11426 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (𝑁 − 1)) ∈ ℝ)
84fovcl 6718 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
98zred 11426 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℝ)
109adantr 481 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 𝑁) ∈ ℝ)
117, 10readdcld 10013 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) ∈ ℝ)
12 0red 9985 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ∈ ℝ)
13 frmx 36958 . . . . . 6 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1413fovcl 6718 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1514adantr 481 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1615nn0red 11296 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Xrm 𝑁) ∈ ℝ)
17 znegcl 11356 . . . . . . . . . 10 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
1817ad2antlr 762 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -𝑁 ∈ ℤ)
1918peano2zd 11429 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (-𝑁 + 1) ∈ ℤ)
204fovcl 6718 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (-𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (-𝑁 + 1)) ∈ ℤ)
211, 19, 20syl2anc 692 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (-𝑁 + 1)) ∈ ℤ)
2221zred 11426 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (-𝑁 + 1)) ∈ ℝ)
234fovcl 6718 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ -𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) ∈ ℤ)
241, 18, 23syl2anc 692 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -𝑁) ∈ ℤ)
2524zred 11426 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -𝑁) ∈ ℝ)
26 rmy0 36974 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
2726ad2antrr 761 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 0) = 0)
28 simpr 477 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝑁 ≤ 0)
29 zre 11325 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3029ad2antlr 762 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝑁 ∈ ℝ)
3130le0neg1d 10543 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
3228, 31mpbid 222 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ≤ -𝑁)
33 0zd 11333 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ∈ ℤ)
34 zleltp1 11372 . . . . . . . . . 10 ((0 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (0 ≤ -𝑁 ↔ 0 < (-𝑁 + 1)))
3533, 18, 34syl2anc 692 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (0 ≤ -𝑁 ↔ 0 < (-𝑁 + 1)))
3632, 35mpbid 222 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < (-𝑁 + 1))
37 ltrmy 36999 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ (-𝑁 + 1) ∈ ℤ) → (0 < (-𝑁 + 1) ↔ (𝐴 Yrm 0) < (𝐴 Yrm (-𝑁 + 1))))
381, 33, 19, 37syl3anc 1323 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (0 < (-𝑁 + 1) ↔ (𝐴 Yrm 0) < (𝐴 Yrm (-𝑁 + 1))))
3936, 38mpbid 222 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 0) < (𝐴 Yrm (-𝑁 + 1)))
4027, 39eqbrtrrd 4637 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < (𝐴 Yrm (-𝑁 + 1)))
41 lermy 37002 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (0 ≤ -𝑁 ↔ (𝐴 Yrm 0) ≤ (𝐴 Yrm -𝑁)))
421, 33, 18, 41syl3anc 1323 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (0 ≤ -𝑁 ↔ (𝐴 Yrm 0) ≤ (𝐴 Yrm -𝑁)))
4332, 42mpbid 222 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 0) ≤ (𝐴 Yrm -𝑁))
4427, 43eqbrtrrd 4637 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ≤ (𝐴 Yrm -𝑁))
45 addgtge0 10460 . . . . . 6 ((((𝐴 Yrm (-𝑁 + 1)) ∈ ℝ ∧ (𝐴 Yrm -𝑁) ∈ ℝ) ∧ (0 < (𝐴 Yrm (-𝑁 + 1)) ∧ 0 ≤ (𝐴 Yrm -𝑁))) → 0 < ((𝐴 Yrm (-𝑁 + 1)) + (𝐴 Yrm -𝑁)))
4622, 25, 40, 44, 45syl22anc 1324 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < ((𝐴 Yrm (-𝑁 + 1)) + (𝐴 Yrm -𝑁)))
477recnd 10012 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm (𝑁 − 1)) ∈ ℂ)
4810recnd 10012 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm 𝑁) ∈ ℂ)
4947, 48negdid 10349 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) = (-(𝐴 Yrm (𝑁 − 1)) + -(𝐴 Yrm 𝑁)))
50 rmyneg 36973 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm -(𝑁 − 1)) = -(𝐴 Yrm (𝑁 − 1)))
511, 3, 50syl2anc 692 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -(𝑁 − 1)) = -(𝐴 Yrm (𝑁 − 1)))
52 rmyneg 36973 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁))
5352adantr 481 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -𝑁) = -(𝐴 Yrm 𝑁))
5451, 53oveq12d 6622 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm -(𝑁 − 1)) + (𝐴 Yrm -𝑁)) = (-(𝐴 Yrm (𝑁 − 1)) + -(𝐴 Yrm 𝑁)))
55 zcn 11326 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5655ad2antlr 762 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 𝑁 ∈ ℂ)
57 ax-1cn 9938 . . . . . . . . 9 1 ∈ ℂ
58 negsubdi 10281 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑁 − 1) = (-𝑁 + 1))
5956, 57, 58sylancl 693 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -(𝑁 − 1) = (-𝑁 + 1))
6059oveq2d 6620 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (𝐴 Yrm -(𝑁 − 1)) = (𝐴 Yrm (-𝑁 + 1)))
6160oveq1d 6619 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm -(𝑁 − 1)) + (𝐴 Yrm -𝑁)) = ((𝐴 Yrm (-𝑁 + 1)) + (𝐴 Yrm -𝑁)))
6249, 54, 613eqtr2d 2661 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) = ((𝐴 Yrm (-𝑁 + 1)) + (𝐴 Yrm -𝑁)))
6346, 62breqtrrd 4641 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 < -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))
6411lt0neg1d 10541 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → (((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < 0 ↔ 0 < -((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
6563, 64mpbird 247 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < 0)
6615nn0ge0d 11298 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → 0 ≤ (𝐴 Xrm 𝑁))
6711, 12, 16, 65, 66ltletrd 10141 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 0) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
68 simpll 789 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → 𝐴 ∈ (ℤ‘2))
69 elnnz 11331 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
7069biimpri 218 . . . 4 ((𝑁 ∈ ℤ ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
7170adantll 749 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
72 jm2.24nn 37006 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
7368, 71, 72syl2anc 692 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ 0 < 𝑁) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
7429adantl 482 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
75 0re 9984 . . 3 0 ∈ ℝ
76 lelttric 10088 . . 3 ((𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑁 ≤ 0 ∨ 0 < 𝑁))
7774, 75, 76sylancl 693 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ∨ 0 < 𝑁))
7867, 73, 77mpjaodan 826 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cmin 10210  -cneg 10211  cn 10964  2c2 11014  0cn0 11236  cz 11321  cuz 11631   Xrm crmx 36944   Yrm crmy 36945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-xnn0 11308  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-dvds 14908  df-gcd 15141  df-numer 15367  df-denom 15368  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-log 24207  df-squarenn 36885  df-pell1qr 36886  df-pell14qr 36887  df-pell1234qr 36888  df-pellfund 36889  df-rmx 36946  df-rmy 36947
This theorem is referenced by:  jm2.26lem3  37048
  Copyright terms: Public domain W3C validator