Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27dlem2 Structured version   Visualization version   GIF version

Theorem jm2.27dlem2 37057
Description: Lemma for rmydioph 37061. This theorem is used along with the next three to efficiently infer steps like 7 ∈ (1...10). (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypotheses
Ref Expression
jm2.27dlem2.1 𝐴 ∈ (1...𝐵)
jm2.27dlem2.2 𝐶 = (𝐵 + 1)
jm2.27dlem2.3 𝐵 ∈ ℕ
Assertion
Ref Expression
jm2.27dlem2 𝐴 ∈ (1...𝐶)

Proof of Theorem jm2.27dlem2
StepHypRef Expression
1 jm2.27dlem2.1 . . 3 𝐴 ∈ (1...𝐵)
2 elfzelz 12284 . . 3 (𝐴 ∈ (1...𝐵) → 𝐴 ∈ ℤ)
31, 2ax-mp 5 . 2 𝐴 ∈ ℤ
4 elfzle1 12286 . . 3 (𝐴 ∈ (1...𝐵) → 1 ≤ 𝐴)
51, 4ax-mp 5 . 2 1 ≤ 𝐴
63zrei 11327 . . . 4 𝐴 ∈ ℝ
7 jm2.27dlem2.3 . . . . 5 𝐵 ∈ ℕ
87nnrei 10973 . . . 4 𝐵 ∈ ℝ
9 elfzle2 12287 . . . . 5 (𝐴 ∈ (1...𝐵) → 𝐴𝐵)
101, 9ax-mp 5 . . . 4 𝐴𝐵
11 letrp1 10809 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ≤ (𝐵 + 1))
126, 8, 10, 11mp3an 1421 . . 3 𝐴 ≤ (𝐵 + 1)
13 jm2.27dlem2.2 . . 3 𝐶 = (𝐵 + 1)
1412, 13breqtrri 4640 . 2 𝐴𝐶
15 1z 11351 . . 3 1 ∈ ℤ
16 nnz 11343 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
17 peano2z 11362 . . . . 5 (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ)
187, 16, 17mp2b 10 . . . 4 (𝐵 + 1) ∈ ℤ
1913, 18eqeltri 2694 . . 3 𝐶 ∈ ℤ
20 elfz1 12273 . . 3 ((1 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (1...𝐶) ↔ (𝐴 ∈ ℤ ∧ 1 ≤ 𝐴𝐴𝐶)))
2115, 19, 20mp2an 707 . 2 (𝐴 ∈ (1...𝐶) ↔ (𝐴 ∈ ℤ ∧ 1 ≤ 𝐴𝐴𝐶))
223, 5, 14, 21mpbir3an 1242 1 𝐴 ∈ (1...𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 196  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613  (class class class)co 6604  cr 9879  1c1 9881   + caddc 9883  cle 10019  cn 10964  cz 11321  ...cfz 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269
This theorem is referenced by:  rmydioph  37061  expdiophlem2  37069
  Copyright terms: Public domain W3C validator