MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinlem Structured version   Visualization version   GIF version

Theorem joinlem 17623
Description: Lemma for join properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
joinlem.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
joinlem (𝜑 → ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
Distinct variable groups:   𝑧,𝐵   𝑧,   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝜑(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem joinlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 joinval2.b . . . . 5 𝐵 = (Base‘𝐾)
2 joinval2.l . . . . 5 = (le‘𝐾)
3 joinval2.j . . . . 5 = (join‘𝐾)
4 joinval2.k . . . . 5 (𝜑𝐾𝑉)
5 joinval2.x . . . . 5 (𝜑𝑋𝐵)
6 joinval2.y . . . . 5 (𝜑𝑌𝐵)
7 joinlem.e . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
81, 2, 3, 4, 5, 6, 7joineu 17622 . . . 4 (𝜑 → ∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
9 riotasbc 7134 . . . 4 (∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) → [(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
108, 9syl 17 . . 3 (𝜑[(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
111, 2, 3, 4, 5, 6joinval2 17621 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1211sbceq1d 3779 . . 3 (𝜑 → ([(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ [(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1310, 12mpbird 259 . 2 (𝜑[(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
14 ovex 7191 . . 3 (𝑋 𝑌) ∈ V
15 breq2 5072 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑋 𝑥𝑋 (𝑋 𝑌)))
16 breq2 5072 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑌 𝑥𝑌 (𝑋 𝑌)))
1715, 16anbi12d 632 . . . 4 (𝑥 = (𝑋 𝑌) → ((𝑋 𝑥𝑌 𝑥) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌))))
18 breq1 5071 . . . . . 6 (𝑥 = (𝑋 𝑌) → (𝑥 𝑧 ↔ (𝑋 𝑌) 𝑧))
1918imbi2d 343 . . . . 5 (𝑥 = (𝑋 𝑌) → (((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧) ↔ ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2019ralbidv 3199 . . . 4 (𝑥 = (𝑋 𝑌) → (∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧) ↔ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2117, 20anbi12d 632 . . 3 (𝑥 = (𝑋 𝑌) → (((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧))))
2214, 21sbcie 3814 . 2 ([(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2313, 22sylib 220 1 (𝜑 → ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  ∃!wreu 3142  [wsbc 3774  cop 4575   class class class wbr 5068  dom cdm 5557  cfv 6357  crio 7115  (class class class)co 7158  Basecbs 16485  lecple 16574  joincjn 17556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-lub 17586  df-join 17588
This theorem is referenced by:  lejoin1  17624  lejoin2  17625  joinle  17626
  Copyright terms: Public domain W3C validator