Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004lem3 Structured version   Visualization version   GIF version

Theorem k0004lem3 40506
Description: When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021.)
Assertion
Ref Expression
k0004lem3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))

Proof of Theorem k0004lem3
StepHypRef Expression
1 sneq 4579 . . . . . 6 ((𝐹𝐴) = 𝐶 → {(𝐹𝐴)} = {𝐶})
2 eqimss 4025 . . . . . 6 ({(𝐹𝐴)} = {𝐶} → {(𝐹𝐴)} ⊆ {𝐶})
31, 2syl 17 . . . . 5 ((𝐹𝐴) = 𝐶 → {(𝐹𝐴)} ⊆ {𝐶})
4 fvex 6685 . . . . . 6 (𝐹𝐴) ∈ V
54snsssn 4774 . . . . 5 ({(𝐹𝐴)} ⊆ {𝐶} → (𝐹𝐴) = 𝐶)
63, 5impbii 211 . . . 4 ((𝐹𝐴) = 𝐶 ↔ {(𝐹𝐴)} ⊆ {𝐶})
7 elmapfn 8431 . . . . . 6 (𝐹 ∈ (𝐵m {𝐴}) → 𝐹 Fn {𝐴})
8 simpl1 1187 . . . . . . 7 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → 𝐴𝑈)
9 snidg 4601 . . . . . . 7 (𝐴𝑈𝐴 ∈ {𝐴})
108, 9syl 17 . . . . . 6 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → 𝐴 ∈ {𝐴})
11 fnsnfv 6745 . . . . . 6 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
127, 10, 11syl2an2 684 . . . . 5 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1312sseq1d 4000 . . . 4 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → ({(𝐹𝐴)} ⊆ {𝐶} ↔ (𝐹 “ {𝐴}) ⊆ {𝐶}))
146, 13syl5bb 285 . . 3 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → ((𝐹𝐴) = 𝐶 ↔ (𝐹 “ {𝐴}) ⊆ {𝐶}))
1514pm5.32da 581 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ (𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶})))
16 snex 5334 . . 3 {𝐴} ∈ V
17 simp2 1133 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐵𝑉)
18 simp3 1134 . . . 4 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐶𝐵)
1918snssd 4744 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → {𝐶} ⊆ 𝐵)
20 k0004lem2 40505 . . 3 (({𝐴} ∈ V ∧ 𝐵𝑉 ∧ {𝐶} ⊆ 𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶}) ↔ 𝐹 ∈ ({𝐶} ↑m {𝐴})))
2116, 17, 19, 20mp3an2i 1462 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶}) ↔ 𝐹 ∈ ({𝐶} ↑m {𝐴})))
22 snex 5334 . . . 4 {𝐶} ∈ V
2322, 16elmap 8437 . . 3 (𝐹 ∈ ({𝐶} ↑m {𝐴}) ↔ 𝐹:{𝐴}⟶{𝐶})
24 fsng 6901 . . . 4 ((𝐴𝑈𝐶𝐵) → (𝐹:{𝐴}⟶{𝐶} ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
25243adant2 1127 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹:{𝐴}⟶{𝐶} ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
2623, 25syl5bb 285 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹 ∈ ({𝐶} ↑m {𝐴}) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
2715, 21, 263bitrd 307 1 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  wss 3938  {csn 4569  cop 4575  cima 5560   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-map 8410
This theorem is referenced by:  k0004val0  40511
  Copyright terms: Public domain W3C validator