Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac1 Structured version   Visualization version   GIF version

Theorem kelac1 37950
 Description: Kelley's choice, basic form: if a collection of sets can be cast as closed sets in the factors of a topology, and there is a definable element in each topology (which need not be in the closed set - if it were this would be trivial), then compactness (via finite intersection) guarantees that the final product is nonempty. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac1.z ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
kelac1.j ((𝜑𝑥𝐼) → 𝐽 ∈ Top)
kelac1.c ((𝜑𝑥𝐼) → 𝐶 ∈ (Clsd‘𝐽))
kelac1.b ((𝜑𝑥𝐼) → 𝐵:𝑆1-1-onto𝐶)
kelac1.u ((𝜑𝑥𝐼) → 𝑈 𝐽)
kelac1.k (𝜑 → (∏t‘(𝑥𝐼𝐽)) ∈ Comp)
Assertion
Ref Expression
kelac1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐽(𝑥)

Proof of Theorem kelac1
Dummy variables 𝑓 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kelac1.c . . . . . . 7 ((𝜑𝑥𝐼) → 𝐶 ∈ (Clsd‘𝐽))
2 eqid 2651 . . . . . . . 8 𝐽 = 𝐽
32cldss 20881 . . . . . . 7 (𝐶 ∈ (Clsd‘𝐽) → 𝐶 𝐽)
41, 3syl 17 . . . . . 6 ((𝜑𝑥𝐼) → 𝐶 𝐽)
54ralrimiva 2995 . . . . 5 (𝜑 → ∀𝑥𝐼 𝐶 𝐽)
6 boxriin 7992 . . . . 5 (∀𝑥𝐼 𝐶 𝐽X𝑥𝐼 𝐶 = (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
75, 6syl 17 . . . 4 (𝜑X𝑥𝐼 𝐶 = (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
8 kelac1.k . . . . . . . . 9 (𝜑 → (∏t‘(𝑥𝐼𝐽)) ∈ Comp)
9 cmptop 21246 . . . . . . . . 9 ((∏t‘(𝑥𝐼𝐽)) ∈ Comp → (∏t‘(𝑥𝐼𝐽)) ∈ Top)
10 0ntop 20758 . . . . . . . . . . 11 ¬ ∅ ∈ Top
11 fvprc 6223 . . . . . . . . . . . 12 (¬ (𝑥𝐼𝐽) ∈ V → (∏t‘(𝑥𝐼𝐽)) = ∅)
1211eleq1d 2715 . . . . . . . . . . 11 (¬ (𝑥𝐼𝐽) ∈ V → ((∏t‘(𝑥𝐼𝐽)) ∈ Top ↔ ∅ ∈ Top))
1310, 12mtbiri 316 . . . . . . . . . 10 (¬ (𝑥𝐼𝐽) ∈ V → ¬ (∏t‘(𝑥𝐼𝐽)) ∈ Top)
1413con4i 113 . . . . . . . . 9 ((∏t‘(𝑥𝐼𝐽)) ∈ Top → (𝑥𝐼𝐽) ∈ V)
158, 9, 143syl 18 . . . . . . . 8 (𝜑 → (𝑥𝐼𝐽) ∈ V)
16 kelac1.j . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐽 ∈ Top)
17 eqid 2651 . . . . . . . . 9 (𝑥𝐼𝐽) = (𝑥𝐼𝐽)
1816, 17fmptd 6425 . . . . . . . 8 (𝜑 → (𝑥𝐼𝐽):𝐼⟶Top)
19 dmfex 7166 . . . . . . . 8 (((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽):𝐼⟶Top) → 𝐼 ∈ V)
2015, 18, 19syl2anc 694 . . . . . . 7 (𝜑𝐼 ∈ V)
2116ralrimiva 2995 . . . . . . 7 (𝜑 → ∀𝑥𝐼 𝐽 ∈ Top)
22 eqid 2651 . . . . . . . 8 (∏t‘(𝑥𝐼𝐽)) = (∏t‘(𝑥𝐼𝐽))
2322ptunimpt 21446 . . . . . . 7 ((𝐼 ∈ V ∧ ∀𝑥𝐼 𝐽 ∈ Top) → X𝑥𝐼 𝐽 = (∏t‘(𝑥𝐼𝐽)))
2420, 21, 23syl2anc 694 . . . . . 6 (𝜑X𝑥𝐼 𝐽 = (∏t‘(𝑥𝐼𝐽)))
2524ineq1d 3846 . . . . 5 (𝜑 → (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
26 eqid 2651 . . . . . 6 (∏t‘(𝑥𝐼𝐽)) = (∏t‘(𝑥𝐼𝐽))
272topcld 20887 . . . . . . . . . 10 (𝐽 ∈ Top → 𝐽 ∈ (Clsd‘𝐽))
2816, 27syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐽 ∈ (Clsd‘𝐽))
291, 28ifcld 4164 . . . . . . . 8 ((𝜑𝑥𝐼) → if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘𝐽))
3020, 16, 29ptcldmpt 21465 . . . . . . 7 (𝜑X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘(∏t‘(𝑥𝐼𝐽))))
3130adantr 480 . . . . . 6 ((𝜑𝑦𝐼) → X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘(∏t‘(𝑥𝐼𝐽))))
32 simprr 811 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → 𝑧 ∈ Fin)
33 kelac1.b . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → 𝐵:𝑆1-1-onto𝐶)
34 f1ofo 6182 . . . . . . . . . . . . . . 15 (𝐵:𝑆1-1-onto𝐶𝐵:𝑆onto𝐶)
35 foima 6158 . . . . . . . . . . . . . . 15 (𝐵:𝑆onto𝐶 → (𝐵𝑆) = 𝐶)
3633, 34, 353syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (𝐵𝑆) = 𝐶)
3736eqcomd 2657 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝐶 = (𝐵𝑆))
38 kelac1.z . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
39 f1ofn 6176 . . . . . . . . . . . . . . . . 17 (𝐵:𝑆1-1-onto𝐶𝐵 Fn 𝑆)
4033, 39syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 𝐵 Fn 𝑆)
41 ssid 3657 . . . . . . . . . . . . . . . 16 𝑆𝑆
42 fnimaeq0 6051 . . . . . . . . . . . . . . . 16 ((𝐵 Fn 𝑆𝑆𝑆) → ((𝐵𝑆) = ∅ ↔ 𝑆 = ∅))
4340, 41, 42sylancl 695 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → ((𝐵𝑆) = ∅ ↔ 𝑆 = ∅))
4443necon3bid 2867 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → ((𝐵𝑆) ≠ ∅ ↔ 𝑆 ≠ ∅))
4538, 44mpbird 247 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (𝐵𝑆) ≠ ∅)
4637, 45eqnetrd 2890 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝐶 ≠ ∅)
47 n0 3964 . . . . . . . . . . . 12 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
4846, 47sylib 208 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → ∃𝑤 𝑤𝐶)
49 rexv 3251 . . . . . . . . . . 11 (∃𝑤 ∈ V 𝑤𝐶 ↔ ∃𝑤 𝑤𝐶)
5048, 49sylibr 224 . . . . . . . . . 10 ((𝜑𝑥𝐼) → ∃𝑤 ∈ V 𝑤𝐶)
5150ralrimiva 2995 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼𝑤 ∈ V 𝑤𝐶)
52 ssralv 3699 . . . . . . . . . 10 (𝑧𝐼 → (∀𝑥𝐼𝑤 ∈ V 𝑤𝐶 → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶))
5352adantr 480 . . . . . . . . 9 ((𝑧𝐼𝑧 ∈ Fin) → (∀𝑥𝐼𝑤 ∈ V 𝑤𝐶 → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶))
5451, 53mpan9 485 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶)
55 eleq1 2718 . . . . . . . . 9 (𝑤 = (𝑓𝑥) → (𝑤𝐶 ↔ (𝑓𝑥) ∈ 𝐶))
5655ac6sfi 8245 . . . . . . . 8 ((𝑧 ∈ Fin ∧ ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶))
5732, 54, 56syl2anc 694 . . . . . . 7 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶))
5824eqcomd 2657 . . . . . . . . . . 11 (𝜑 (∏t‘(𝑥𝐼𝐽)) = X𝑥𝐼 𝐽)
5958ineq1d 3846 . . . . . . . . . 10 (𝜑 → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
6059ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
61 iftrue 4125 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑧 → if(𝑥𝑧, (𝑓𝑥), 𝑈) = (𝑓𝑥))
6261ad2antrl 764 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = (𝑓𝑥))
63 simpll 805 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝜑)
64 simprl 809 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → 𝑧𝐼)
6564sselda 3636 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝑥𝐼)
6663, 65, 4syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝐶 𝐽)
6766sseld 3635 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → (𝑓𝑥) ∈ 𝐽))
6867impr 648 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → (𝑓𝑥) ∈ 𝐽)
6962, 68eqeltrd 2730 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
7069expr 642 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
7170ralimdva 2991 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶 → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
7271imp 444 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
73 eldifn 3766 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐼𝑧) → ¬ 𝑥𝑧)
7473iffalsed 4130 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐼𝑧) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
7574adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
76 eldifi 3765 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐼𝑧) → 𝑥𝐼)
77 kelac1.u . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → 𝑈 𝐽)
7876, 77sylan2 490 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐼𝑧)) → 𝑈 𝐽)
7975, 78eqeltrd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8079ralrimiva 2995 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8180ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
82 ralun 3828 . . . . . . . . . . . . . 14 ((∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ∧ ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8372, 81, 82syl2anc 694 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
84 undif 4082 . . . . . . . . . . . . . . . . 17 (𝑧𝐼 ↔ (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8584biimpi 206 . . . . . . . . . . . . . . . 16 (𝑧𝐼 → (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8685ad2antrl 764 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8786raleqdv 3174 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
8887adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
8983, 88mpbid 222 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
9020ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → 𝐼 ∈ V)
91 mptelixpg 7987 . . . . . . . . . . . . 13 (𝐼 ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
9290, 91syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
9389, 92mpbird 247 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽)
94 eleq2 2719 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 = if(𝑥 = 𝑦, 𝐶, 𝐽) → ((𝑓𝑥) ∈ 𝐶 ↔ (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
95 eleq2 2719 . . . . . . . . . . . . . . . . . . . . . 22 ( 𝐽 = if(𝑥 = 𝑦, 𝐶, 𝐽) → ((𝑓𝑥) ∈ 𝐽 ↔ (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
96 simplrr 818 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) ∧ 𝑥 = 𝑦) → (𝑓𝑥) ∈ 𝐶)
9768adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) ∧ ¬ 𝑥 = 𝑦) → (𝑓𝑥) ∈ 𝐽)
9894, 95, 96, 97ifbothda 4156 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
9962, 98eqeltrd 2730 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
10099expr 642 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
101100ralimdva 2991 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶 → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
102101imp 444 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
103102adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
10478adantlr 751 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑈 𝐽)
10574adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
106 incom 3838 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐼𝑧) ∩ 𝑧) = (𝑧 ∩ (𝐼𝑧))
107 disjdif 4073 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∩ (𝐼𝑧)) = ∅
108106, 107eqtri 2673 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼𝑧) ∩ 𝑧) = ∅
109108a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → ((𝐼𝑧) ∩ 𝑧) = ∅)
110 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑥 ∈ (𝐼𝑧))
111 simplr 807 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑦𝑧)
112 disjne 4055 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐼𝑧) ∩ 𝑧) = ∅ ∧ 𝑥 ∈ (𝐼𝑧) ∧ 𝑦𝑧) → 𝑥𝑦)
113109, 110, 111, 112syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑥𝑦)
114113neneqd 2828 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → ¬ 𝑥 = 𝑦)
115114iffalsed 4130 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥 = 𝑦, 𝐶, 𝐽) = 𝐽)
116104, 105, 1153eltr4d 2745 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
117116ralrimiva 2995 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
118117adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
119118adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
120 ralun 3828 . . . . . . . . . . . . . . . 16 ((∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ∧ ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
121103, 119, 120syl2anc 694 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
12286raleqdv 3174 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
123122ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
124121, 123mpbid 222 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
12520ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → 𝐼 ∈ V)
126 mptelixpg 7987 . . . . . . . . . . . . . . 15 (𝐼 ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
127125, 126syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
128124, 127mpbird 247 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
129128ralrimiva 2995 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
130 mptexg 6525 . . . . . . . . . . . . . . 15 (𝐼 ∈ V → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
13120, 130syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
132131ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
133 eliin 4557 . . . . . . . . . . . . 13 ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
134132, 133syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
135129, 134mpbird 247 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
13693, 135elind 3831 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
137 ne0i 3954 . . . . . . . . . 10 ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) → (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
138136, 137syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13960, 138eqnetrd 2890 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
140139adantrl 752 . . . . . . 7 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶)) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
14157, 140exlimddv 1903 . . . . . 6 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
14226, 8, 31, 141cmpfiiin 37577 . . . . 5 (𝜑 → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
14325, 142eqnetrd 2890 . . . 4 (𝜑 → (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
1447, 143eqnetrd 2890 . . 3 (𝜑X𝑥𝐼 𝐶 ≠ ∅)
145 n0 3964 . . 3 (X𝑥𝐼 𝐶 ≠ ∅ ↔ ∃𝑦 𝑦X𝑥𝐼 𝐶)
146144, 145sylib 208 . 2 (𝜑 → ∃𝑦 𝑦X𝑥𝐼 𝐶)
147 elixp2 7954 . . . . . 6 (𝑦X𝑥𝐼 𝐶 ↔ (𝑦 ∈ V ∧ 𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶))
148147simp3bi 1098 . . . . 5 (𝑦X𝑥𝐼 𝐶 → ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶)
149 f1ocnv 6187 . . . . . . . 8 (𝐵:𝑆1-1-onto𝐶𝐵:𝐶1-1-onto𝑆)
150 f1of 6175 . . . . . . . 8 (𝐵:𝐶1-1-onto𝑆𝐵:𝐶𝑆)
151 ffvelrn 6397 . . . . . . . . 9 ((𝐵:𝐶𝑆 ∧ (𝑦𝑥) ∈ 𝐶) → (𝐵‘(𝑦𝑥)) ∈ 𝑆)
152151ex 449 . . . . . . . 8 (𝐵:𝐶𝑆 → ((𝑦𝑥) ∈ 𝐶 → (𝐵‘(𝑦𝑥)) ∈ 𝑆))
15333, 149, 150, 1524syl 19 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑦𝑥) ∈ 𝐶 → (𝐵‘(𝑦𝑥)) ∈ 𝑆))
154153ralimdva 2991 . . . . . 6 (𝜑 → (∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶 → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
155154imp 444 . . . . 5 ((𝜑 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶) → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆)
156148, 155sylan2 490 . . . 4 ((𝜑𝑦X𝑥𝐼 𝐶) → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆)
157 mptelixpg 7987 . . . . . 6 (𝐼 ∈ V → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
15820, 157syl 17 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
159158adantr 480 . . . 4 ((𝜑𝑦X𝑥𝐼 𝐶) → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
160156, 159mpbird 247 . . 3 ((𝜑𝑦X𝑥𝐼 𝐶) → (𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆)
161 ne0i 3954 . . 3 ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆X𝑥𝐼 𝑆 ≠ ∅)
162160, 161syl 17 . 2 ((𝜑𝑦X𝑥𝐼 𝐶) → X𝑥𝐼 𝑆 ≠ ∅)
163146, 162exlimddv 1903 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  ∃wex 1744   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  Vcvv 3231   ∖ cdif 3604   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  ifcif 4119  ∪ cuni 4468  ∩ ciin 4553   ↦ cmpt 4762  ◡ccnv 5142   “ cima 5146   Fn wfn 5921  ⟶wf 5922  –onto→wfo 5924  –1-1-onto→wf1o 5925  ‘cfv 5926  Xcixp 7950  Fincfn 7997  ∏tcpt 16146  Topctop 20746  Clsdccld 20868  Compccmp 21237 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-topgen 16151  df-pt 16152  df-top 20747  df-bases 20798  df-cld 20871  df-cmp 21238 This theorem is referenced by:  kelac2  37952
 Copyright terms: Public domain W3C validator