Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2 Structured version   Visualization version   GIF version

Theorem kelac2 37142
 Description: Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac2.s ((𝜑𝑥𝐼) → 𝑆𝑉)
kelac2.z ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
kelac2.k (𝜑 → (∏t‘(𝑥𝐼 ↦ (topGen‘{𝑆, {𝒫 𝑆}}))) ∈ Comp)
Assertion
Ref Expression
kelac2 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem kelac2
StepHypRef Expression
1 kelac2.z . 2 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
2 kelac2.s . . 3 ((𝜑𝑥𝐼) → 𝑆𝑉)
3 kelac2lem 37141 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
4 cmptop 21117 . . 3 ((topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
52, 3, 43syl 18 . 2 ((𝜑𝑥𝐼) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
6 uncom 3740 . . . . . . 7 (𝑆 ∪ {𝒫 𝑆}) = ({𝒫 𝑆} ∪ 𝑆)
76difeq1i 3707 . . . . . 6 ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆) = (({𝒫 𝑆} ∪ 𝑆) ∖ 𝑆)
8 difun2 4025 . . . . . 6 (({𝒫 𝑆} ∪ 𝑆) ∖ 𝑆) = ({𝒫 𝑆} ∖ 𝑆)
97, 8eqtri 2643 . . . . 5 ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆) = ({𝒫 𝑆} ∖ 𝑆)
10 snex 4874 . . . . . . 7 {𝒫 𝑆} ∈ V
11 uniprg 4421 . . . . . . 7 ((𝑆𝑉 ∧ {𝒫 𝑆} ∈ V) → {𝑆, {𝒫 𝑆}} = (𝑆 ∪ {𝒫 𝑆}))
122, 10, 11sylancl 693 . . . . . 6 ((𝜑𝑥𝐼) → {𝑆, {𝒫 𝑆}} = (𝑆 ∪ {𝒫 𝑆}))
1312difeq1d 3710 . . . . 5 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) = ((𝑆 ∪ {𝒫 𝑆}) ∖ 𝑆))
14 incom 3788 . . . . . . 7 ({𝒫 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 𝑆})
15 pwuninel 7353 . . . . . . . . 9 ¬ 𝒫 𝑆𝑆
1615a1i 11 . . . . . . . 8 ((𝜑𝑥𝐼) → ¬ 𝒫 𝑆𝑆)
17 disjsn 4221 . . . . . . . 8 ((𝑆 ∩ {𝒫 𝑆}) = ∅ ↔ ¬ 𝒫 𝑆𝑆)
1816, 17sylibr 224 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑆 ∩ {𝒫 𝑆}) = ∅)
1914, 18syl5eq 2667 . . . . . 6 ((𝜑𝑥𝐼) → ({𝒫 𝑆} ∩ 𝑆) = ∅)
20 disj3 3998 . . . . . 6 (({𝒫 𝑆} ∩ 𝑆) = ∅ ↔ {𝒫 𝑆} = ({𝒫 𝑆} ∖ 𝑆))
2119, 20sylib 208 . . . . 5 ((𝜑𝑥𝐼) → {𝒫 𝑆} = ({𝒫 𝑆} ∖ 𝑆))
229, 13, 213eqtr4a 2681 . . . 4 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) = {𝒫 𝑆})
23 prex 4875 . . . . . 6 {𝑆, {𝒫 𝑆}} ∈ V
24 bastg 20690 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ V → {𝑆, {𝒫 𝑆}} ⊆ (topGen‘{𝑆, {𝒫 𝑆}}))
2523, 24mp1i 13 . . . . 5 ((𝜑𝑥𝐼) → {𝑆, {𝒫 𝑆}} ⊆ (topGen‘{𝑆, {𝒫 𝑆}}))
2610prid2 4273 . . . . . 6 {𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}}
2726a1i 11 . . . . 5 ((𝜑𝑥𝐼) → {𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}})
2825, 27sseldd 3588 . . . 4 ((𝜑𝑥𝐼) → {𝒫 𝑆} ∈ (topGen‘{𝑆, {𝒫 𝑆}}))
2922, 28eqeltrd 2698 . . 3 ((𝜑𝑥𝐼) → ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}}))
30 prid1g 4270 . . . . 5 (𝑆𝑉𝑆 ∈ {𝑆, {𝒫 𝑆}})
31 elssuni 4438 . . . . 5 (𝑆 ∈ {𝑆, {𝒫 𝑆}} → 𝑆 {𝑆, {𝒫 𝑆}})
322, 30, 313syl 18 . . . 4 ((𝜑𝑥𝐼) → 𝑆 {𝑆, {𝒫 𝑆}})
33 unitg 20691 . . . . . . 7 ({𝑆, {𝒫 𝑆}} ∈ V → (topGen‘{𝑆, {𝒫 𝑆}}) = {𝑆, {𝒫 𝑆}})
3423, 33ax-mp 5 . . . . . 6 (topGen‘{𝑆, {𝒫 𝑆}}) = {𝑆, {𝒫 𝑆}}
3534eqcomi 2630 . . . . 5 {𝑆, {𝒫 𝑆}} = (topGen‘{𝑆, {𝒫 𝑆}})
3635iscld2 20751 . . . 4 (((topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top ∧ 𝑆 {𝑆, {𝒫 𝑆}}) → (𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})) ↔ ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}})))
375, 32, 36syl2anc 692 . . 3 ((𝜑𝑥𝐼) → (𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})) ↔ ( {𝑆, {𝒫 𝑆}} ∖ 𝑆) ∈ (topGen‘{𝑆, {𝒫 𝑆}})))
3829, 37mpbird 247 . 2 ((𝜑𝑥𝐼) → 𝑆 ∈ (Clsd‘(topGen‘{𝑆, {𝒫 𝑆}})))
39 f1oi 6136 . . 3 ( I ↾ 𝑆):𝑆1-1-onto𝑆
4039a1i 11 . 2 ((𝜑𝑥𝐼) → ( I ↾ 𝑆):𝑆1-1-onto𝑆)
41 elssuni 4438 . . . . 5 ({𝒫 𝑆} ∈ {𝑆, {𝒫 𝑆}} → {𝒫 𝑆} ⊆ {𝑆, {𝒫 𝑆}})
4226, 41mp1i 13 . . . 4 ((𝜑𝑥𝐼) → {𝒫 𝑆} ⊆ {𝑆, {𝒫 𝑆}})
43 uniexg 6915 . . . . 5 (𝑆𝑉 𝑆 ∈ V)
44 pwexg 4815 . . . . 5 ( 𝑆 ∈ V → 𝒫 𝑆 ∈ V)
45 snidg 4182 . . . . 5 (𝒫 𝑆 ∈ V → 𝒫 𝑆 ∈ {𝒫 𝑆})
462, 43, 44, 454syl 19 . . . 4 ((𝜑𝑥𝐼) → 𝒫 𝑆 ∈ {𝒫 𝑆})
4742, 46sseldd 3588 . . 3 ((𝜑𝑥𝐼) → 𝒫 𝑆 {𝑆, {𝒫 𝑆}})
4847, 34syl6eleqr 2709 . 2 ((𝜑𝑥𝐼) → 𝒫 𝑆 (topGen‘{𝑆, {𝒫 𝑆}}))
49 kelac2.k . 2 (𝜑 → (∏t‘(𝑥𝐼 ↦ (topGen‘{𝑆, {𝒫 𝑆}}))) ∈ Comp)
501, 5, 38, 40, 48, 49kelac1 37140 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  Vcvv 3189   ∖ cdif 3556   ∪ cun 3557   ∩ cin 3558   ⊆ wss 3559  ∅c0 3896  𝒫 cpw 4135  {csn 4153  {cpr 4155  ∪ cuni 4407   ↦ cmpt 4678   I cid 4989   ↾ cres 5081  –1-1-onto→wf1o 5851  ‘cfv 5852  Xcixp 7859  topGenctg 16026  ∏tcpt 16027  Topctop 20626  Clsdccld 20739  Compccmp 21108 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fi 8268  df-topgen 16032  df-pt 16033  df-top 20627  df-bases 20670  df-cld 20742  df-cmp 21109 This theorem is referenced by:  dfac21  37143
 Copyright terms: Public domain W3C validator